The University of Texas at Austin Department of Mathematics

The Preliminary Examination in Probability

Part I

Thursday, Aug 23, 2018

Part I

Problem 1. Let $(S, \mathcal{S}), (T, \mathcal{T})$ and (R, \mathcal{R}) be (nonempty) measurable spaces. Consider the following two statements for the function $f: S \times T \to R$:

- (1) $x \mapsto f(x, y)$ is measurable for each $y \in T$ and $y \mapsto f(x, y)$ is measurable for each $x \in S$.
- (2) f is a measurable function

Which of the two implications $(1) \rightarrow (2)$ and $(2) \rightarrow (1)$ is/are true in general? (*Note:* Give a rigorous proof if a statement is true, or a counterexample, together with the proof that it is, indeed, a counterexample, if a statement is false.)

Problem 2. Given $N \in \mathbb{N}$, let X_1, \ldots, X_N be independent, $\mathbb{N} \cup \{0\}$ -valued random variables such that the sum $Y = X_1 + \cdots + X_N$ is binomially distributed with parameters $n \in \mathbb{N} \cup \{0\}$ and $p \in (0, 1)$, i.e., such that $\mathbb{P}[Y = k] = \binom{n}{k}p^k(1-p)^{n-k}$ for $k = 0, \ldots, n$. Show that there exist constants $n_1, \ldots, n_N \in \mathbb{N} \cup \{0\}$ such that $n_1 + \cdots + n_N = n$ and X_i is binomially distributed with parameters n_i and p, for each $i = 1, \ldots, N$.

Problem 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, \mathcal{G} a sub- σ -algebra of \mathcal{F} and $\{A_n\}_{n \in \mathbb{N}}$ a sequence \mathcal{G} -conditionally independent random variables. Show that

$$\Big\{\sum_{i} \mathbb{P}[A_i|\mathcal{G}] = \infty\Big\} = \Big\{\mathbb{P}[\limsup_{i} A_i|\mathcal{G}] = 1\Big\}, \text{ a.s.},$$

where, as usual, two events are equal a.s., if their indicators are a.s.-equal random variables.

(*Hint*: Use the equivalent definition of conditional independence: $\{A_n\}_{n\in\mathbb{N}}$ is an independent sequence under the probability measure $\mathbb{P}_B := \mathbb{P}[\cdot \cap B]/\mathbb{P}[B]$ for each $B \in \mathcal{G}$ with $\mathbb{P}[B] > 0$. You do not have to prove that this definition is equivalent to the classical one.)