The University of Texas at Austin
Department of Mathematics

The Preliminary Examination in Probability
 Part I

Thursday, Aug 23, 2018

Part I

Problem 1. Let $(S, \mathcal{S}),(T, \mathcal{T})$ and (R, \mathcal{R}) be (nonempty) measurable spaces. Consider the following two statements for the function $f: S \times T \rightarrow R$:
(1) $x \mapsto f(x, y)$ is measurable for each $y \in T$ and $y \mapsto f(x, y)$ is measurable for each $x \in S$.
(2) f is a measurable function

Which of the two implications $(1) \rightarrow(2)$ and $(2) \rightarrow(1)$ is/are true in general? (Note: Give a rigorous proof if a statement is true, or a counterexample, together with the proof that it is, indeed, a counterexample, if a statement is false.)

Problem 2. Given $N \in \mathbb{N}$, let X_{1}, \ldots, X_{N} be independent, $\mathbb{N} \cup\{0\}$-valued random variables such that the sum $Y=X_{1}+\cdots+X_{N}$ is binomially distributed with parameters $n \in \mathbb{N} \cup\{0\}$ and $p \in(0,1)$, i.e., such that $\mathbb{P}[Y=k]=$ $\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k=0, \ldots, n$. Show that there exist constants $n_{1}, \ldots, n_{N} \in \mathbb{N} \cup\{0\}$ such that $n_{1}+\cdots+n_{N}=n$ and X_{i} is binomially distributed with parameters n_{i} and p, for each $i=1, \ldots, N$.

Problem 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, \mathcal{G} a sub- σ-algebra of \mathcal{F} and $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ a sequence \mathcal{G}-conditionally independent random variables. Show that

$$
\left\{\sum_{i} \mathbb{P}\left[A_{i} \mid \mathcal{G}\right]=\infty\right\}=\left\{\mathbb{P}\left[\limsup _{i} A_{i} \mid \mathcal{G}\right]=1\right\}, \text { a.s. }
$$

where, as usual, two events are equal a.s., if their indicators are a.s.-equal random variables.
(Hint: Use the equivalent definition of conditional independence: $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is an independent sequence under the probability measure $\mathbb{P}_{B}:=\mathbb{P}[\cdot \cap B] / \mathbb{P}[B]$ for each $B \in \mathcal{G}$ with $\mathbb{P}[B]>0$. You do not have to prove that this definition is equivalent to the classical one.)

