ALGEBRA PRELIMINARY EXAM: PART I

In multi-part problems, you may use earlier parts even if you have not done them.

Problem 1

Let R be a PID, π an irreducible element of R and consider the subset M of R^{2} of pairs (x, y) with π^{2} dividing y and π^{3} dividing $y-x \pi^{2}$.
a) Show that M is a submodule of R^{2} of rank 2 .
b) Find a basis $\left\{v_{1}, v_{2}\right\}$ of R^{2} and $r_{1}, r_{2} \in R$ with r_{1} dividing r_{2} such that $r_{1} v_{1}, r_{2} v_{2}$ is a basis of M.

Problem 2

Throughout this problem, G will always be a group of order 27, but not necessarily the same group in each part.
a) Show that if G has a subgroup H of order three which is not normal, G is isomorphic to a subgroup of S_{9}.
b) Suppose $x \in S_{9}$ is an element of order 9. Find the orders of $C_{S_{9}}(\langle x\rangle)$ and $N_{S_{9}}(\langle x\rangle)$, the centralizer and normalizer of the cyclic subgroup.
c) Suppose $x \in S_{9}$ is an element of order 9. Describe the 3-Sylow subgoup of $N_{S 9}(\langle x\rangle)$.
d) Up to isomorphism, there are four groups of order 27 which contain an element of order 9. List any that can be embedded in S_{9} and justify why your list is correct. [If you desire the classification, two of the groups are abelian and the two non-abelian groups are $\mathbb{Z} / 9 \mathbb{Z} \rtimes \mathbb{Z} / 3 \mathbb{Z}$ and $(\mathbb{Z} / 9 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z}) /<(3,3)>$, the order 27 analog of the quaternions.

Problem 3

Given a linear transformation $T: V \rightarrow V$, we say a subspace W of V is T-stable if $T(W) \subseteq W$. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation which is multiplication by a matrix A which is a Jordan block with eigenvalue $\lambda \neq 0$.
a) Find a proper ascending chain of T-stable subspaces (0) $=W_{0} \subset W_{1} \subset W_{2} \subset \cdots \subset$ $W_{n}=\mathbb{R}^{n}$.
b) Let W be a T^{2}-stable subspace such that $W \subseteq W_{k+1}, W \nsubseteq W_{k}$ for some $k>0$. Show there is a T^{2}-stable subspace $W^{\prime} \subset W$ such that $W^{\prime} \subseteq W_{k}, W^{\prime} \nsubseteq W_{k-1}$.
c) Show the T^{2}-stable subspaces are linearly ordered.
d) Show that if the Jordan canonical form of a transformation $T^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is not a Jordan block, the T^{\prime}-stable subspaces are not linearly ordered.
e) What is the Jordan canonical form of T^{2} ?

