Real Analysis Prelim Fall 2021

August 17, 2021

1. Let $f:[a,b] \to \mathbb{R}$ be an absolutely continuous function, or equivalently,

$$f(x) - f(a) = \int_{a}^{x} f'$$
, for any $a \le x \le b$.

Show that f(x) is Lipschitz if and only if $f' \in L^{\infty}([a, b])$.

2. Part i) Define the space Weak L^p in the unit ball $B_1^n(0)$ in \mathbb{R}^n for $1 , denoted by <math>L^{p,w}(B_1^n(0), dx)$.

Part ii) Show an example of a function f(x) such that $f \in L^{p,w}(B_1^n(0), dx)$, but not in the classical $L^p(B_1^n(0))$

3. Consider the sequence $\{f_n\}$ in $L^p([0,\pi])$ with $1 \le p < \infty$, defined by

$$f_n(x) = \cos nx.$$

Show that $\{f_n\}$ converges weakly to zero in $L^p([0,\pi])$, but does not converge strongly to zero in such Banach space.

4. Let Σ be a compact set of functions $f \in L^p([0,1])$. Let $f^+(x) := \max\{0, f(x)\}$, for all $x \in [0,1]$, be "non-negative part of f(x)".

Show that the subset of Σ , denoted by $\Sigma^+ = \{f^+ : f \in \Sigma\}$, is also compact.

5. Show that if $f \in L^q(\mathbb{R})$, with $1 \le q < \infty$, then

$$\int |f(\lambda x) - f(x)|^q dx \to 0, \quad \text{whenever } \lambda \to 1.$$