PRELIMINARY EXAMINATION IN TOPOLOGY: PART 2

August 2021 2 Hours

Work all 3 problems. Explain your work carefully.

- 1. For each of the following statements give a proof or a counterexample. Justify your counterexamples.
 - (a) Let X be a smooth compact manifold, and suppose $f, g: X \to X$ are smooth maps whose Lefschetz numbers satisfy L(f) = L(g). Then f is homotopic to g.
 - (b) Suppose $f: X \to Y$ is a smooth map between smooth manifolds, and $y_0, y_1 \in Y$ are regular values of f. Assume that Y is connected. Then the manifolds $f^{-1}(y_0)$ and $f^{-1}(y_1)$ are diffeomorphic.
 - (c) Suppose $f: X \to Y$ is a smooth map from one smooth connected manifold to another. Then any two regular values of f are connected by a smooth path of regular values.
- 2. (a) Construct a 1-form $\omega \in \Omega^1(S^1 \times S^1)$ and a smooth curve $\gamma \colon S^1 \to S^1 \times S^1$ such that

$$\int_{S^1} \gamma^* \omega \neq 0$$

and $d\omega = 0$.

(b) Prove that for any closed 1-form $\omega \in \Omega^1(S^2)$ and any smooth curve $\gamma: S^1 \to S^2$, we have

$$\int_{S^1} \gamma^* \omega = 0.$$

- (c) Prove that $S^1 \times S^1$ is not diffeomorphic to S^2 .
- 3. (a) Suppose that X is an n dimensional manifold and $f^1, \ldots, f^{n-1} \colon X \to \mathbb{R}$ are smooth functions such that the differentials $df_x^1, \ldots, df_x^{n-1}$ are linearly independent at some point $x \in X$. Prove that there exists a function $f^n \colon X \to \mathbb{R}$ such that f^1, \ldots, f^n is a local coordinate system in a neighborhood of x.
 - (b) Suppose $f: X \to Y$ is a smooth map from a compact oriented nonempty manifold X to a connected manifold Y. Assume that df_x is invertible for all $x \in X$. Prove that f is surjective.