ALGEBRA PRELIMINARY EXAM: PART II

JANUARY 14TH, 2022

Solve at least three of the following five problems.

Problem 1.

(a) Let $\mathbb{F}_{3^{n}}$ denote the field with 3^{n} elements. Find the smallest n such that $\mathbb{F}_{3^{n}}$ contains a primitive 11 th root root of unity, i.e, such that there is an element $x \in \mathbb{F}_{3^{n}}$ with $x^{11}=1$ and $x \neq 1$.
(b) For integers n and m, write $(n+m \sqrt{3})^{24}$ as $a+b \sqrt{3}$ for $a, b \in \mathbb{Z}$. Show that b is divisible by 7 .

Problem 2.
(a) Let K / k be a Galois extension of fields. Show that $x \in K$ is a primitive element if and only if its stabilizer in the Galois group is trivial.
(b) Let $k=\mathbb{Q}$ and let K be the splitting field of the polynomial $t^{3}-2$. Find a primitive element for this field extension.

Problem 3.

(a) Suppose $f(t) \in \mathbb{Q}[t]$ is an irreducible polynomial of degree 5 with exactly 3 real roots. Show that the Galois group of f is the full symmetric group S_{5}.
(b) Show that the equation $t^{5}-10 t-5=0$ is not solvable by radicals.

Problem 4. For every integer $n \geqslant 1$, show that there is a Galois extension K / \mathbb{Q} with $\operatorname{Gal}(K / \mathbb{Q}) \simeq \mathbb{Z} / n$.
Problem 5.
(a) Let $f(t) \in \mathbb{F}_{p}[t]$ be an irreducible polynomial of degree d. Find its Galois group.
(b) Show that $f(t)=t^{p}-t-1 \in \mathbb{F}_{p}[t]$ is irreducible.

