The University of Texas at Austin
Department of Mathematics

The Preliminary Examination in Probability
Part I

Thu, Jan 13, 2021

Problem 1. Suppose that $\left\{X_{n}, n \geq 1\right\}$ is a sequence of i.i.d nonnegative random variables, that is, $X_{n} \geq 0$ a.s. If $\mathbb{E}\left(X_{1}\right)=\infty$, show that $\frac{1}{n} \sum_{k=1}^{n} X_{k} \rightarrow \infty$ a.s.

Problem 2. Let μ be a probability measure on \mathbb{R} and let φ be its characteristic function. Show that μ has no atoms if

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} e^{-i t a} \varphi(t) d t=0 \text { for all } a \in \mathbb{R}
$$

Problem 3. Let $X \in \mathbb{R}, \mathbb{E}(|X|)<\infty$. Let \mathcal{F} be a sub- σ-algebra. Show that there exists a sequence $\left\{\mathcal{P}_{n}: n \geq 1\right\}$ of finite partitions of Ω such that $\sigma\left(\mathcal{P}_{n}\right) \subseteq \sigma\left(\mathcal{P}_{n+1}\right) \subseteq \mathcal{F}$ for all $n \geq 1$, and

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\left|\sum_{A \in \mathcal{P}_{n}} \mathbb{E}(X \mid A) \mathbf{1}_{A}-\mathbb{E}(X \mid \mathcal{F})\right|\right)=0
$$

