ALGEBRA PRELIMINARY EXAM: PART II

A passing score is $20 / 26$.

Problem 1

Let p and q be two primes. Set $\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}$.
Compute the number of irreducible polynomials in $\mathbb{F}_{p}[x]$ of degree q. (5 points)

Hint: Use the classification of extensions of \mathbb{F}_{p}.

Problem 2

Let $\alpha=\sqrt{2}+\sqrt{3}$.
a) Prove that $\mathbb{Q}(\alpha) / \mathbb{Q}$ is Galois and determine its Galois group as an abstract group. (4 points)
b) Determine the minimal polynomial $f(x)$ of α over \mathbb{Q}. (2 points)
c) Prove that $f(x)$ is reducible modulo p for every prime p. (3 points)
d) Prove that $\sqrt[3]{2} \notin \mathbb{Q}(\alpha)$. (2 points)

Problem 3

Let $n \in \mathbb{N}$ and ζ_{n} a primitive n-th root of unity.
a) Viewing complex conjugation τ as an element of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$, prove that $\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$ is the fixed field of subgroup of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ generated by τ. (3 points)
b) Find a polynomial $f(x) \in \mathbb{Q}[x]$ whose Galois group over \mathbb{Q} is isomorphic to $\mathbb{Z} / 5 \mathbb{Z}$. It is sufficient to identify the polynomial in $\mathbb{C}[x]$ and argue that its coefficients are rational. (3 points)
c) Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of $\mathbb{Q}\left(\zeta_{n}\right) .(4$ points $)$

