Real Analysis Prelim Fall 2022 - August 11, 2022

Choose any three out of the following four problems:

1. Let $0<q<p<\infty$. Let $E \subset \mathbb{R}^{n}$ be measurable with measure $|E|<\infty$. Let f be a measurable function on \mathbb{R}^{n} such that $N \stackrel{\text { def }}{=} \sup _{\lambda>0} \lambda^{p}\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\lambda\right\}\right|$ is finite.
(a) Prove that $\int_{E}|f|^{q}$ is finite.
(b) Refine the argument of (a) to prove that

$$
\int_{E}|f|^{q} \leq C N^{q / p}|E|^{1-q / p}
$$

where C is a constant that depends only on n, p, and q.
2. Let $p \in[1, \infty)$ and suppose $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L^{p}(\mathbb{R})$ is a sequence that converges to 0 in the L^{p} norm.
Prove that one can find a subsequence $\left\{f_{n_{k}}\right\}$ such that $f_{n_{k}} \rightarrow 0$ almost everywhere.
3. For a function $f \in \mathrm{~L}^{1}\left(\mathbb{R}^{2}\right)$ let $\widetilde{M} f$ be the unrestricted maximal function

$$
\widetilde{M} f\left(x_{0}, y_{0}\right)=\frac{1}{|Q|} \sup _{Q} \int_{Q}|f(x, y)| d x d y
$$

where the supremum is over all $Q=\left[x_{0}-k, x_{0}+k\right] \times\left[y_{0}-l, y_{0}+l\right]$ with $k, l>0$.
(a) Show that $\widetilde{M} f\left(x_{0}, y_{0}\right) \leq M_{1} M_{2} f\left(x_{0}, y_{0}\right)$, where

$$
M_{1} f\left(x_{0}, y\right)=\sup _{k>0} \frac{1}{2 k} \int_{x_{0}-k}^{x_{0}+k}|f(x, y)| d x, \quad M_{2} f\left(x, y_{0}\right)=\sup _{l>0} \frac{1}{2 l} \int_{y_{0}-l}^{y_{0}+l}|f(x, y)| d y .
$$

(b) Show that there exists $C>0$ such that if $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{2}\right)$, then

$$
\|\widetilde{M} f\|_{\mathrm{L}^{2}\left(\mathbb{R}^{2}\right)} \leq C\|f\|_{\mathrm{L}^{2}\left(\mathbb{R}^{2}\right)}
$$

4. Let f and the sequence $\left\{f_{k}\right\}_{k \geq 1}$, be in L^{p}, for $1 \leq p<\infty$.

If $f_{k} \rightarrow f$ pointwise a.e. and $\left\|f_{k}\right\|_{p} \rightarrow\|f\|_{p}$, show that $\left\|f-f_{k}\right\|_{p} \rightarrow 0$.

