PRELIMINARY EXAMINATION: APPLIED MATHEMATICS — Part I

August 10, 2022

Work all 3 of the following 3 problems.

- **1.** Let X be a normed linear space and X^* its dual space. Let $\{f_n\}_{n=1}^{\infty} \subset X^*$ and $f \in X^*$.
 - (a) Define what it means for f_n to converge weak-* to f.
 - (b) Prove that if f_n converges converges weak-* to f, then f is unique.
 - (c) State the Uniform Boundedness Principle.
 - (d) Suppose that X is a Banach space. Prove that $\{\|f_n\|_{X^*}\}_{n=1}^{\infty}$ is bounded.

2. Let X be a normed linear space and Y a finite dimensional subspace of X. For $x \in X$ and $S \subset X$, let

$$d(x,S) = \inf_{z \in S} \|x - z\|$$

denote the distance from x to S. Fix $x_0 \in X$ and let $\mathcal{B} = \{y \in Y : ||y|| \le 3 ||x_0||\}.$

(a) Show that

$$d(x_0, Y) = d(x_0, \mathcal{B}).$$

[Hint: first show that $||x_0|| \ge d(x_0, \mathcal{B}) \ge d(x_0, Y)$.]

(b) Show that there is some $y_0 \in \mathcal{B} \subset Y$ such that

$$d(x_0, y_0) = d(x_0, Y).$$

We say that y_0 is a *best approximation* to x_0 . [Hint: why is \mathcal{B} compact?]

(c) Show by example that a best approximation may not be unique. [Hint: try $X = (\mathbb{R}^2, \|\cdot\|_{\ell^1})$ and Y = span(1, 1).]

3. Let X be a Banach space, $S, T \in B(X, X)$, and I be the identity map on X. Suppose further that T is compact.

- (a) Prove that TS and ST are compact.
- (b) Describe the spectrum of a compact operator.
- (c) If S is invertible and S + T is injective, show that S + T is invertible on all of X.