ALGEBRA II QUALIFYING EXAM

AUGUST 20TH, 2021

Problem 1. Let $n \in \mathbb{Z}$ be an integer and let $f_{n}(t)=t^{3}-t+n \in \mathbb{Q}[t]$.
(a) Suppose $3 \nmid n$. Show that f_{n} is irreducible.
(b) Suppose that f_{n} is irreducible. Show that its Galois group is the symmetric group S_{3}.
(c) What isomorphism classes of groups can arise as Galois groups of f_{n} (for f_{n} possibly not irreducible)? For each possibility, provide some value of n realizing the specific Galois group.

Problem 2. Suppose k is a field and $f \in k[t]$ is a degree n separable polynomial with splitting field K. Let $r_{1}, \ldots, r_{n} \in K$ be the roots of f.
(a) Show that K is generated (as a k-algebra) by r_{1}, \ldots, r_{n-1}.
(b) Suppose K / k has degree n !. Show that the subfield of K generated by r_{1}, \ldots, r_{n-2} is properly contained in K.

Problem 3. Let p be an odd prime and let $\zeta_{p} \in \mathbb{C}$ denote a primitive p th root of unity.
There are unique integers $a_{1}, a_{2}, \ldots, a_{p-1}$ such that:

- $a_{1}=1$.
- For $G:=\sum_{i=1}^{p-1} a_{i} \zeta_{p}^{i}, G \notin \mathbb{Q}$ but $G^{2} \in \mathbb{Q}$.

Determine the values of a_{i} and G^{2}.
(Hint: for calculating G^{2}, it helps at one point to use the automorphism of $\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}$given by $\left.(i, j) \mapsto\left(i, \frac{i}{j}\right).\right)$

