ALGEBRA PRELIMINARY EXAM: PART I

In multi-part problems, you may use earlier parts even if you have not done them.

Problem 1

Let k be a field, n a positive integer, and T the linear transformation on k^n defined by

$$T(x_1, x_2, \dots, x_n) = (x_n, x_1, x_2, \dots, x_{n-1}).$$

We view k^n as a k[x]-module with x acting as T.

- a) Show that the k[x]-module k^n is isomorphic to $k[x]/(x^n 1)$.
- b) Let V be a linear subspace of k^n satisfying $T(V) \subseteq V$. Prove that there exists a monic polynomial $g(x) \in k[x]$ such that V corresponds to

 $\{g(x)a(x) \mid a(x) \in k[x], \deg a(x) < n - \deg g(x)\}$

under the above isomorphism.

c) Take $k = \mathbb{R}$, the real numbers, and n = 3. Describe explicitly all subspaces V of \mathbb{R}^3 satisfying $T(V) \subseteq V$.

Problem 2

Let R be an integral domain and I be an ideal of R. Fix $x \in R$ and define

$$(I:x) = \{r \in R \mid rx \in I\}.$$

- a) Prove (I:x) is an ideal of R.
- b) Show that if (I:x) = I, then $(I:x^2) = I$.
- c) Show that if $(I:x) \subseteq xR$, but $(I:x) \nsubseteq \bigcap_{n=1}^{\infty} x^n R$, then $I \neq (I:x)$.
- d) If R is not a principal ideal domain, show that R has an ideal maximal with respect to the property of not being principal.
- e) If R is a unique factorization domain with the property that every maximal ideal is principal, show that R is a principal ideal domain.

Date: August 19, 2019.

ALGEBRA PRELIMINARY EXAM: PART I

Problem 3

Assume G is a group of order $456 = 2 \cdot 3 \cdot 7 \cdot 13$.

- a) Show G has a normal Sylow subgroup of order either 7 or 13.
- b) Show that G is a semidirect product of a cyclic group of order 91 by a group of order 6.
- c) Let K be a group of order 42. Then K is the semidirect product of a cyclic group of order 7 by a group of order 6. (Prove this **only** if you are unable to do part (b).) How many non-isomorphic groups of order 42 are there? Roughly describe them.
- d) More challenging do not spend too much time.
 - (i) Let H be the direct product of two characteristic subgroups H_1 and H_2 . Prove Aut $H \cong \operatorname{Aut} H_1 \times \operatorname{Aut} H_2$.
 - (ii) Noting the similarity between 42 = 7.6 and 78 = 13.6, how many non-isomorphic groups of order 456 are there?