ALGEBRA PRELIMINARY EXAM: PART I

In multi-part problems, you may use earlier parts even if you have not done them.

Problem 1

Let k be a field, n a positive integer, and T the linear transformation on k^{n} defined by

$$
T\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{n}, x_{1}, x_{2}, \ldots, x_{n-1}\right)
$$

We view k^{n} as a $k[x]$-module with x acting as T.
a) Show that the $k[x]$-module k^{n} is isomorphic to $k[x] /\left(x^{n}-1\right)$.
b) Let V be a linear subspace of k^{n} satisfying $T(V) \subseteq V$. Prove that there exists a monic polynomial $g(x) \in k[x]$ such that V corresponds to

$$
\{g(x) a(x) \mid a(x) \in k[x], \operatorname{deg} a(x)<n-\operatorname{deg} g(x)\}
$$

under the above isomorphism.
c) Take $k=\mathbb{R}$, the real numbers, and $n=3$. Describe explicitly all subspaces V of \mathbb{R}^{3} satisfying $T(V) \subseteq V$.

Problem 2

Let R be an integral domain and I be an ideal of R. Fix $x \in R$ and define

$$
(I: x)=\{r \in R \mid r x \in I\} .
$$

a) Prove $(I: x)$ is an ideal of R.
b) Show that if $(I: x)=I$, then $\left(I: x^{2}\right)=I$.
c) Show that if $(I: x) \subseteq x R$, but $(I: x) \nsubseteq \cap_{n=1}^{\infty} x^{n} R$, then $I \neq(I: x)$.
d) If R is not a principal ideal domain, show that R has an ideal maximal with respect to the property of not being principal.
e) If R is a unique factorization domain with the property that every maximal ideal is principal, show that R is a principal ideal domain.

Problem 3

Assume G is a group of order $456=2 \cdot 3 \cdot 7 \cdot 13$.
a) Show G has a normal Sylow subgroup of order either 7 or 13 .
b) Show that G is a semidirect product of a cyclic group of order 91 by a group of order 6.
c) Let K be a group of order 42 . Then K is the semidirect product of a cyclic group of order 7 by a group of order 6. (Prove this only if you are unable to do part (b).) How many non-isomorphic groups of order 42 are there? Roughly describe them.
d) More challenging - do not spend too much time.
(i) Let H be the direct product of two characteristic subgroups H_{1} and H_{2}. Prove Aut $H \cong$ Aut $H_{1} \times$ Aut H_{2}.
(ii) Noting the similarity between $42=7 \cdot 6$ and $78=13 \cdot 6$, how many non-isomorphic groups of order 456 are there?

