PRELIMINARY EXAMINATION IN ALGEBRA
 PART I
 JANUARY 15, 2021

Please solve at least 3 of the following 4 problems.
(1) A group is called an elementary abelian p-group if it is isomorphic to $(\mathbb{Z} / p)^{n}$ for some n. Suppose G is a solvable finite group. Prove that it has an elementary abelian subgroup A which is characteristic in G, i.e., $\sigma(A)=A$ for all $\sigma \in$ Aut (G).

Hint: if H is any abelian group then the map $x \mapsto x^{p}$ is a homomorphism from H to itself.
(2) Show that if $|G|=132=2^{2} \cdot 3 \cdot 11$ then G is not simple.
(3) Let $R=\mathbb{Z}[\sqrt{10}]$. Note

$$
6=2 \cdot 3=(4+\sqrt{10})(4-\sqrt{10})
$$

Are 2 or 3 irreducible in R ? Are they prime in R ? Is R a UFD? (Prove your answers.)
(4) Prove that the rings $F[x, y] /\left(y^{2}-x\right)$ and $F[x, y] /\left(x^{2}-y^{2}\right)$ are non-isomorphic for any field F.

