ALGEBRA PRELIMINARY EXAM: PART II

Problem 1

Let \mathbb{F}_{3} be the finite field with 3 elements.
a) Prove that for every positive integer d there exists an irreducible polynomial $f(x) \in \mathbb{F}_{3}(x)$ of degree d.
b) Determine the number of irreducible polynomials of degree 4 over \mathbb{F}_{3}.

Problem 2

Consider $f(x)=x^{4}-14 x^{2}+9 \in \mathbb{Q}[x]$ and let α be a root of $f(x)$.
a) Prove that $f(x)$ is irreducible over \mathbb{Q}.
b) Prove that the extension $\mathbb{Q}[\alpha] / \mathbb{Q}$ is Galois.
c) Determine the Galois group of the splitting field of $f(x)$ over \mathbb{Q} as a subgroup of S_{4}.

Problem 3

a) Let F / \mathbb{Q} be a finite extension. Prove that there exists $\alpha \in F$ such that $F=\mathbb{Q}(\alpha)$ (i.e. F / \mathbb{Q} is a simple extension).
b) Give an example of a finite extension which is not simple (proof required).

