ALGEBRA PRELIMINARY EXAM: PART II

Problem 1

Let \mathbb{F}_3 be the finite field with 3 elements.

- a) Prove that for every positive integer d there exists an irreducible polynomial $f(x) \in \mathbb{F}_3(x)$ of degree d.
- b) Determine the number of irreducible polynomials of degree 4 over \mathbb{F}_3 .

Problem 2

Consider $f(x) = x^4 - 14x^2 + 9 \in \mathbb{Q}[x]$ and let α be a root of f(x).

- a) Prove that f(x) is irreducible over \mathbb{Q} .
- b) Prove that the extension $\mathbb{Q}[\alpha]/\mathbb{Q}$ is Galois.
- c) Determine the Galois group of the splitting field of f(x) over \mathbb{Q} as a subgroup of S_4 .

Problem 3

- a) Let F/\mathbb{Q} be a finite extension. Prove that there exists $\alpha \in F$ such that $F = \mathbb{Q}(\alpha)$ (i.e. F/\mathbb{Q} is a simple extension).
- b) Give an example of a finite extension which is not simple (proof required).

Date: January 10, 2020.