ALGEBRA PRELIMINARY EXAM: PART II

Problem 1

Let $\alpha = \sqrt[3]{4} + \sqrt[3]{2} + 1$.

- a) Determine the degree of α over \mathbb{Q} .
- b) Prove that $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha^2)$.

Problem 2

Let p be a prime and \mathbb{F}_p the field with p elements.

- a) Describe finite extensions of \mathbb{F}_p (no proofs required).
- b) Determine the splitting field over \mathbb{F}_p of $x^p x a \in \mathbb{F}_p[x]$ where $a \in \mathbb{F}_p \setminus \{0\}$.

Problem 3

Consider the polynomial $f(x) = x^4 - 2x^2 + 2$. Let L be the splitting field of f(x) over \mathbb{Q} .

- a) Prove that f(x) is irreducible in $\mathbb{Q}[x]$.
- b) Determine the degree of L/\mathbb{Q} .
- c) Determine the Galois group $\operatorname{Gal}(L/\mathbb{Q})$ as an abstract group.
- d) Prove that L is not a subfield of a cyclotomic extension of \mathbb{Q} , i.e. $L \not\subseteq \mathbb{Q}(\zeta)$ where ζ is a root of unity.
- e) Determine all the subfields of L/\mathbb{Q} which are Galois extensions of \mathbb{Q} .

Date: August 19, 2019.