ALGEBRA PRELIMINARY EXAM: PART II

Problem 1

Let $\alpha=\sqrt[3]{4}+\sqrt[3]{2}+1$.
a) Determine the degree of α over \mathbb{Q}.
b) Prove that $\mathbb{Q}(\alpha)=\mathbb{Q}\left(\alpha^{2}\right)$.

Problem 2

Let p be a prime and \mathbb{F}_{p} the field with p elements.
a) Describe finite extensions of \mathbb{F}_{p} (no proofs required).
b) Determine the splitting field over \mathbb{F}_{p} of $x^{p}-x-a \in \mathbb{F}_{p}[x]$ where $a \in \mathbb{F}_{p} \backslash\{0\}$.

Problem 3

Consider the polynomial $f(x)=x^{4}-2 x^{2}+2$. Let L be the splitting field of $f(x)$ over \mathbb{Q}.
a) Prove that $f(x)$ is irreducible in $\mathbb{Q}[x]$.
b) Determine the degree of L / \mathbb{Q}.
c) Determine the Galois group $\operatorname{Gal}(L / \mathbb{Q})$ as an abstract group.
d) Prove that L is not a subfield of a cyclotomic extension of \mathbb{Q}, i.e. $L \nsubseteq \mathbb{Q}(\zeta)$ where ζ is a root of unity.
e) Determine all the subfields of L / \mathbb{Q} which are Galois extensions of \mathbb{Q}.

