ALGEBRA PRELIMINARY EXAM: PART II

Problem 1

Let K be a field and $f(x) \in K[x]$ be a separable irreducible polynomial of degree 5. Assume that α, β are two distinct roots of f(x) such that $K(\alpha) = K(\beta)$. Prove that $K(\alpha)/K$ is Galois.

Hint: Consider the action of the Galois group of f(x) over K on the fields $K(\alpha)$ and $K(\beta)$.

Problem 2

Let K/\mathbb{Q} be an extension of degree n.

- i) Show that the number of subfields of K is at most $2^{n!}$.
- ii) Suppose that $K = \mathbb{Q}(\alpha, \beta)$. Prove that there exists $m \in \mathbb{Z}$ such that $0 \le m \le 2^{n!}$ and $K = \mathbb{Q}(\alpha + m\beta)$.

Hint: Use the Galois correspondence between intermediate fields and subgroups.

Problem 3

Let p be a prime and \mathbb{F}_p be the field with p elements.

- i) Determine the number of irreducible quadratic polynomials in $\mathbb{F}_p[x]$.
- ii) Let f(x) be an irreducible quadratic polynomial in $\mathbb{F}_p[x]$ and K be a field of cardinality p^3 . Prove that f(x) is irreducible in K[x].

Date: August 17, 2020.