PRELIMINARY EXAMINATION IN ANALYSIS Part II, Complex Analysis

August 17, 2021

- **1.** Consider the right half-plane $H = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$. Find all analytic functions $f: H \to H$ that satisfy f(2) = 1/2 and f(1/2) = 2.
- **2.** Let f be a meromorphic function on \mathbb{C} that satisfies f(z)f(-z) = 1 for all $z \in \mathbb{C}$. Show that there exists an entire function g such that f(z) = g(z)/g(-z) for all $z \in \mathbb{C}$. (For simplicity you may assume that f(0) = 1.)
- **3.** Let f be an entire function satisfying a bound $|f(z)| \le \exp(|z|^n)$ for all $z \in \mathbb{C}$, where n is some positive integer. If f(z) = 0 whenever $\exp(\exp z) = 1$, show that f = 0.
- **4.** Let f_1, f_2, f_3, \ldots be bounded analytic functions on $\Omega = \{z \in \mathbb{C} : |z| > 1\}$ that take values in Ω . If the sequence $n \mapsto f_n(k)$ converges for each integer k > 1, show that the sequence $n \mapsto f_n$ converges uniformly on compact subsets of Ω .