Real Analysis August 2020 Prelim Exam

Problem 1: Let μ be a finite measure on a σ -algebra \mathcal{M} , and let $\{E_t\}_{t>0}$ be a family of elements of \mathcal{M} indexed over $t \in (0, \infty)$. Show that if

$$\mu\Big(\bigcup_{t>0}E_t\Big)<\infty\,,$$

then $\mu(E_t) = 0$ for all but countably many values of t.

Problem 2: Let (X, \mathcal{M}, μ) be a finite measure space and let $f : X \times (-1, 1) \to \mathbb{R}$ be a function f = f(x, t) such that for each $t \in (-1, 1)$, $f(\cdot, t) : X \to \mathbb{R}$ is \mathcal{M} measurable, and such that for μ -a.e. $x \in X$, $f(x, \cdot)$ has a classical derivative at t = 0 in the sense that

$$\frac{\partial f}{\partial t}(x,0) = \lim_{h \to 0^+} \frac{f(x,h) - f(x,0)}{h}$$

exists for μ -a.e. $x \in X$. Show that if there exists $M < \infty$ such that

$$|f(x,t) - f(x,0)| \le M |t|$$
 for μ -a.e. $x \in X$

then the function

$$g(t) = \int_X f(x,t) \, d\mu(x)$$

is differentiable at t = 0 with

$$g'(0) = \int_X \frac{\partial f}{\partial t}(x,0) \, d\mu(x) \, .$$

Problem 3: Let $\mu_1 = \#$ be the counting measures on \mathbb{R} (so that #(E) equals the number of elements of *E*), and let $\mu_2 = \mathcal{L}^1$ be the Lebesgue measure on \mathbb{R} . Let $E = \{(x, y) \in \mathbb{R}^2 : 0 \le x = y \le 1\}$. Show that the iterated integrals

$$\int_{\mathbb{R}} d\mu_1(x) \int_{\mathbb{R}} f(x,y) d\mu_2(y), \qquad \int_{\mathbb{R}} d\mu_2(x) \int_{\mathbb{R}} f(x,y) d\mu_1(y),$$

for $f = 1_E$, the characteristic function of E, are well-defined, but are not equal. Explain why this is not in contradiction to Fubini's theorem.

Problem 4: Given $f : \mathbb{R}^n \to \mathbb{R}$, let $\tau_M(f) = 1_{B_M(0)} \min\{M, \max\{f, -M\}\}$ for M > 0. Show that $\tau_M(f) \to f$ in $L^p(\mathbb{R}^n, \mu)$ as $M \to \infty$ whenever $p \in [1, \infty)$,

 $f \in L^p(\mathbb{R}^n, \mu)$ and μ is a locally finite Borel measure on \mathbb{R}^n . Does this result hold if $p = +\infty$?

Problem 5: Let *L* be a bounded linear map from a Banach space *X* to itself, and assume that *L* is a contraction, that is, let ||L|| < 1. Define a sequence $\{x_k\}_k$ in *X* by the recursive relation $x_{k+1} = Lx_k$. Show that $\{x_k\}_k$ is a Cauchy sequence in *X* (by using the convergence of the geometric series defined by ||L||) and deduce the existence of a fixed point of *L*, that is, the existence of $x \in X$ such that x = Lx.