PRELIMINARY EXAMINATION: APPLIED MATHEMATICS — Part II August 24, 2020

Work all 3 of the following 3 problems.

- **1.** Suppose that $f \in \mathcal{S}$ (the Schwartz space) and α is a multi-index.
 - (a) Prove that $(D^{\alpha}f)^{\wedge}(\xi) = (i\xi)^{\alpha}\hat{f}(\xi)$. [Hint: Use integration by parts.]

(b) Prove that $D^{\alpha}\hat{f}(\xi) = ((-ix)^{\alpha}f(x))^{\wedge}(\xi)$. [Hint: Prove the result for a single derivative and then use iteration.]

2. Suppose that X and Y are Hilbert spaces and $A: X \to X, B: Y \to X$, and $C: Y \to Y$ are bounded linear operators, with A being invertible, B being bounded below, and C being negative semi definite. Consider the problem

$$Ax + By = f,$$

$$B^*x + Cy = g,$$

where $f \in X$ and $g \in Y$.

(a) Why is A^{-1} continuous and the second equation well posed?

(b) Rewrite the problem by using the first equation to solve for x and then replace x in the second equation.

(c) Use the Lax-Milgram theorem to show that there is a unique solution to the problem.

3. Let $g : \mathbb{R} \to \mathbb{R}$ be a contraction with fixed point $u_* = g(u_*)$. Consider the problem of finding a continuous function $u : \mathbb{R} \to \mathbb{R}$ near u_* such that

$$u(t) = g(u(t)) + \epsilon \int_0^t (u(s))^3 \, ds = G(u),$$

where $\epsilon \ge 0$. Note that $G(u) : C([0,T]) \to C([0,T])$ for any T > 0.

(a) Use the Banach contraction mapping theorem to show that there is a solution to u = G(u) near u^* for any ϵ , at least for small enough T.

(b) Can your solution from (a) be extended so that $T \to \infty$? Why or why not?

(c) Suppose that g is C^1 and $Dg(u_*)$ is invertible. Use the implicit function theorem to show that there is a solution near u_* for any fixed T, provided $\epsilon > 0$ is small enough.

(d) Can your solution from (c) be extended so that $T \to \infty$? Why or why not?