PRELIMINARY EXAMINATION: APPLIED MATHEMATICS - Part II

August 24, 2020
Work all 3 of the following 3 problems.

1. Suppose that $f \in \mathcal{S}$ (the Schwartz space) and α is a multi-index.
(a) Prove that $\left(D^{\alpha} f\right)^{\wedge}(\xi)=(i \xi)^{\alpha} \hat{f}(\xi)$. [Hint: Use integration by parts.]
(b) Prove that $D^{\alpha} \hat{f}(\xi)=\left((-i x)^{\alpha} f(x)\right)^{\wedge}(\xi)$. [Hint: Prove the result for a single derivative and then use iteration.]
2. Suppose that X and Y are Hilbert spaces and $A: X \rightarrow X, B: Y \rightarrow X$, and $C: Y \rightarrow Y$ are bounded linear operators, with A being invertible, B being bounded below, and C being negative semi definite. Consider the problem

$$
\begin{aligned}
& A x+B y=f, \\
& B^{*} x+C y=g
\end{aligned}
$$

where $f \in X$ and $g \in Y$.
(a) Why is A^{-1} continuous and the second equation well posed?
(b) Rewrite the problem by using the first equation to solve for x and then replace x in the second equation.
(c) Use the Lax-Milgram theorem to show that there is a unique solution to the problem.
3. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a contraction with fixed point $u_{*}=g\left(u_{*}\right)$. Consider the problem of finding a continuous function $u: \mathbb{R} \rightarrow \mathbb{R}$ near u_{*} such that

$$
u(t)=g(u(t))+\epsilon \int_{0}^{t}(u(s))^{3} d s=G(u),
$$

where $\epsilon \geq 0$. Note that $G(u): C([0, T]) \rightarrow C([0, T])$ for any $T>0$.
(a) Use the Banach contraction mapping theorem to show that there is a solution to $u=G(u)$ near u^{*} for any ϵ, at least for small enough T.
(b) Can your solution from (a) be extended so that $T \rightarrow \infty$? Why or why not?
(c) Suppose that g is C^{1} and $D g\left(u_{*}\right)$ is invertible. Use the implicit function theorem to show that there is a solution near u_{*} for any fixed T, provided $\epsilon>0$ is small enough.
(d) Can your solution from (c) be extended so that $T \rightarrow \infty$? Why or why not?

