PRELIMINARY EXAMINATION: APPLIED MATHEMATICS — Part II August 16, 2021

Work all 3 of the following 3 problems.

1. (Poincaré type inequalities.) Consider a connected, bounded domain $\Omega \subset \mathbb{R}^d$ with a smooth boundary.

(a) Let u_n be a bounded sequence of $H^1(\Omega)$. Assume that ∇u_n converges to 0 in $L^2(\Omega)$. Show that u_n converges strongly in $L^2(\Omega)$ to a constant a.

(b) In addition, assume that $\gamma_0(u_n)$, the trace of u_n on $\partial\Omega$, converges to 0 in $L^2(\partial\Omega)$. Show that u_n converges to 0 in $L^2(\Omega)$.

(c) Show that there exists C > 0, depending only on Ω , such that for any $u \in H^1(\Omega)$:

$$\|u\|_{L^{2}(\Omega)}^{2} \leq C(\|\nabla u\|_{L^{2}(\Omega)}^{2} + \|\gamma_{0}(u)\|_{L^{2}(\partial\Omega)}^{2}).$$
(1)

[Hint: You can give a proof by contradiction using (**a**) and (**b**).]

2. Let Ω be a connected, bounded domain with a smooth boundary, and consider the differential boundary value problem

$$-\Delta u = f \quad \text{in } \Omega,$$

$$-\nabla u \cdot \nu = g + u \quad \text{on } \partial\Omega.$$

(a) Develop an appropriate weak or variational form for the problem. In what Sobolev spaces should f and g lie?

(b) Prove that there exists a unique solution to the problem. [Hint: You may use the Poincaré inequality (1).]

3. Let X be a Banach space and $F: X \to X$ be a smooth map. Suppose that x_* is a simple root of F in the sense that $F(x_*) = 0$ and the derivative $DF(x_*)$ is invertible. Given any starting point x_0 , consider the full Newton iteration scheme

$$x_{k+1} = G(x_k)$$
 where $G(x) = x - DF(x)^{-1}F(x)$.

Here we prove that if x_0 is sufficiently close to x_* , then $x_k \to x_*$ as $k \to \infty$.

(a) Show that $G(x_*) = x_*$, $DG(x_*) = 0$ and that there is a closed ball B about x_* such that $\|DG(x)\| \leq \frac{1}{2}$ for all $x \in B$. [Hint: You do not need to compute DG(x), only $DG(x_*)$.]

(b) Show that $G(x) \in B$ for all $x \in B$.

(c) Show that $G: B \to B$ is a contraction.

(d) Prove that $x_k \to x_*$ as $k \to \infty$ for any $x_0 \in B$.