PRELIMINARY EXAMINATION: APPLIED MATHEMATICS — Part I August 16, 2021

Work all 3 of the following 3 problems.

1. Let $c_0 \subset \ell^{\infty}$ be the set of complex valued sequences converging to 0, endowed with the ℓ^{∞} -norm. For any $y \in \ell^1$, we define $f_y : c_0 \to \mathbb{C}$ by

$$f_y(x) = \sum_{j=1}^{\infty} x_j \bar{y}_j$$

(a) Show that for any $y \in \ell^1$, $f_y \in (c_0)'$, the dual of c_0 , with $||f_y||_{(c_0)'} \leq ||y||_{\ell^1}$.

(b) Show that $||f_y||_{(c_0)'} = ||y||_{\ell^1}$. [Hint: Consider the sequence (x^n) of elements of c_0 defined as $x_j^n = 0$ for $j \ge n$, and x_j^n is equal to either 0 (if $y_j = 0$) or $y_j/|y_j|$ (if $y_j \ne 0$) for j < n.]

(c) Show that every $f \in (c_0)'$ is of the form f_y for some $y \in \ell^1$.

2. Let *H* be a real Hilbert space and suppose that *P* is a bounded linear projection on *H*. Let Q = I - P and define M = P(H) and N = Q(H). Suppose that *M* and *N* are closed. Recall that Px = x for all $x \in M$ and that $M \cap N = \{0\}$.

(a) Show that there exists C > 0 such that

$$||x - Px|| \le C \inf_{y \in M} ||x - y|| \quad \text{for all } x \in H.$$

[Hint: Relate this to the *orthogonal* projection \mathcal{P}_{M} .]

(b) Prove that P is an orthogonal projection if and only if

$$\inf_{\substack{y \in N, \|y\|=1\\x \in M}} \|y - x\| = 1$$

[Hint: For the converse, it is enough to show that for any $z \in H$, $z - Pz = Qz \perp M$. Consider y = Qz/||Qz||.]

3. Let X be a Banach space with dual X^* . Let $\{L_n\}_{n=1}^{\infty} \subset X^*$ and $\{x_n\}_{n=1}^{\infty} \subset X$. Assume that $L_n \to L \in X^*$ in the weak-* sense, and $x_n \to x$ in the norm of X.

(a) State the Uniform Boundedness Principle.

(b) Show that if X is a reflexive Banach space, then $L_n(x_n) \to L(x)$.

(c) Give an example to show that if we replace strong convergence by weak convergence of x_n , so instead only $x_n \stackrel{w}{\rightharpoonup} x$ in X, then (c) does not hold. [Hint: Consider ℓ^2 and $x_n = e_n$, where $(e_n)_n = 1$ and $(e_n)_m = 0$ for $m \neq n$.]