The University of Texas at Austin
Department of Mathematics

The Preliminary Examination in Probability
 Part I

Thu, Aug 19, 2021

Problem 1. Let X_{n} be a sequence of random variables taking values in \mathbb{N}. Is it true that
X_{n} converges a.s. if and only if X_{n} converges in probability
? If it is, give a proof. Otherwise, give a counterexample.
Problem 2. Let X_{1}, X_{2}, \ldots be i.i.d random variables with values in \mathbb{Z}^{2}, where X_{1} is uniformly distributed in $\{(k, m): k \in\{-1,0,1\}, m \in\{-1,0,1\}\}$ (9 possible values, each happens with probability $1 / 9$). Let $S_{n}=\sum_{i=1}^{n} X_{i} \in \mathbb{Z}^{2}$. Show that $\frac{S_{n}}{\sqrt{n}} \xrightarrow{d} S^{*}$, and find the distribution of S^{*}.

Problem 3. Give an example of a submartingale $\left\{X_{n}\right\}_{n \in \mathbb{N}_{0}}$ with the property that $X_{n} \rightarrow-\infty$, a.s., but $\mathbb{E}\left[X_{n}\right] \rightarrow+\infty$, as $n \rightarrow \infty$.

