The University of Texas at Austin

Department of Mathematics

The Preliminary Examination in Probability
 Part I

Friday, Aug 23, 2019

Part I

Problem 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space on which an independent sequence of random variables $\left\{Y_{n}\right\}_{n \in \mathbb{N}_{0}}$ such that $\mathbb{P}\left[Y_{n}= \pm 1\right]=1 / 2$ is defined. We set

$$
X_{n}=\prod_{k=0}^{n} Y_{k}, \text { and } \mathcal{F}_{n}=\sigma\left(X_{k}, k>n\right) \text { for } n \in \mathbb{N}_{0}, \text { as well as } \mathcal{C}=\sigma\left(Y_{1}, Y_{2}, \ldots\right)
$$

(1) Show that $\mathcal{D}=\cap_{n} \mathcal{F}_{n}$ is independent of each $Y_{k}, k \in \mathbb{N}_{0}$.
(2) Prove that $\bigcap_{n}\left(\mathcal{C} \vee \mathcal{F}_{n}\right) \neq \mathcal{C} \vee\left(\cap_{n} \mathcal{F}_{n}\right)$, where $\mathcal{A} \vee \mathcal{B}=\sigma(\mathcal{A} \cup \mathcal{B})$.

Problem 2.

(1) Let X and Y be two random variables taking values in $[0,2 \pi)$. Show that they must be equally distributed as soon as their characteristic functions agree on the set of all integers. (Hint: Use the Stone-Weierstrass theorem to approximate (uniformly) a continuous function by a trigonometric polynomial.)
(2) Let U and V be two independent random variables, uniformly distributed on $[0,1)$. Given $m, n \in \mathbb{N}$, use (1) above to determine the distribution of $X=\{m U+n V\}$? (Note: $\{x\}$ denotes the fractional part of x, i.e., $\{x\}=x-\lfloor x\rfloor$ and $\lfloor x\rfloor$ is the largest integer $\leq x$.)

Problem 3. Construct two random variables $X \in \mathcal{L}^{2}$ and Y, defined on the same probability space, such that
(a) $\mathbb{E}[X \mid \sigma(Y)]=\mathbb{E}[X]$, a.s.,
(b) $\mathbb{E}\left[X^{2} \mid \sigma(Y)\right]=\mathbb{E}\left[X^{2}\right]$, a.s., but
(c) X and Y are not independent.

For partial credit, construct X and Y for which only (a) and (c) are required hold.

