Preliminary Examination in Differential Topology January 2021

Question 1

Suppose that η is a *k*-form on an *n*-manifold *X*, with $d\eta = 0$; that *Y* is a closed, oriented *k*-manifold; and that $f_0: Y \to X$ and $f_1: Y \to X$ are smooth maps. Prove that if f_0 is smoothly homotopic to f_1 then

$$\int_Y f_0^* \eta = \int_Y f_1^* \eta.$$

Carefully state any results that you use.

Question 2

Define $f: \mathbb{C}^2 \to \mathbb{C}$ by $f(w, z) = w^2 - z^3$, and let $V = f^{-1}(0)$.

- (a) Prove that *V* intersects the unit sphere $S^3 \subset \mathbb{C}^2$ transversely in a 1-manifold *K*. [*Hint:* consider the \mathbb{R} -action on \mathbb{C}^2 given by $t \cdot (z, w) = (t^2 z, t^3 w)$.]
- (b) Prove that the map $\Phi = \arg f = f/|f| : \mathbb{C}^2 \setminus V \to S^1 \subset \mathbb{C}$ is a submersion.
- (c) Prove that the restricted map $\phi = \arg f \colon S^3 \setminus K \to S^1 \subset \mathbb{C}$ is also a submersion.

Question 3

Let Σ be a compact, oriented 2-manifold, and let $\Gamma \subset \Sigma$ be a compact, oriented 1-dimensional submanifold. Construct a closed 1-form τ_{Γ} on Σ such that

$$\int_{\Sigma} \sigma \wedge \tau_{\Gamma} = \int_{\Gamma} \sigma|_{\Gamma}$$

for all closed 1-forms σ on Σ .

Note: You may take for granted that any such Γ , if connected, has an open neighborhood diffeomorphic to $S^1 \times (-1, 1)$ by a diffeomorphism carrying Γ to $S^1 \times \{0\}$ (*bonus:* prove this!).