PRELIMINARY EXAMINATION IN ALGEBRA
 PART I
 AUGUST 17, 2020

Please solve at least 3 of the following 4 problems.
(1) Let G be a group of order p^{k} for some prime p and $k \geq 1$. Show that for every $1 \leq l \leq k$ that G has a normal subgroup of order p^{l}. Please prove this from first principles.
(2) Let n be an odd number so that $\pi=(1,2, \ldots, n) \in A_{n}$. Is the S_{n}-conjugacy class of π the same as its A_{n}-conjugacy class?
(3) Let R be a PID. An ideal $I \subset R$ is primary if for all $a, b \in R$ with $a b \in I$ either $a \in I$ or there exists $n \in \mathbb{N}$ such that $b^{n} \in I$. Prove that if $I \subset R$ is primary then there exists a prime element $p \in R$ and $n \in \mathbb{N}$ such that $I=\left(p^{n}\right)$.
(4) Consider $R=M_{2}\left(\mathbb{F}_{19}\right)$, the ring of 2×2 matrices over the field with 19 elements. Find a complete set of representatives for the conjugacy classes of order 5 elements. Hint: in $\mathbb{F}_{19}[x]$,

$$
x^{5}-1=(x-1)\left(x^{2}-4 x+1\right)\left(x^{2}+5 x+1\right)
$$

