PRELIMINARY EXAMINATION:
 APPLIED MATHEMATICS - Part I

January 16, 2020, 1:00-2:30
Work all 3 of the following 3 problems.

1. Let X be a Banach space with dual space X^{*} and duality pairing $\langle\cdot, \cdot\rangle$, and let $A, B: X \rightarrow X^{*}$ be linear maps.
(a) State the Closed Graph Theorem and what it means for an operator to be closed.
(b) Assuming $\langle A x, y\rangle=\langle A y, x\rangle$ for all $x, y \in X$, show that A is bounded.
(c) Assuming $\langle B x, x\rangle \geq 0$ for all $x \in X$, show that B is bounded. [Hint: Suppose B is not continuous at 0 , so $x_{n} \rightarrow 0$ but $B x_{n} \rightarrow y \neq 0$. For $w \in X$ such that $\langle y, x\rangle>0$, consider $x_{n}+\epsilon w$.]
2. Let $\Omega=[0,1]$ and $1 \leq p<\infty$ be given and consider the sequence of functions $g_{n} \in L^{p}(\Omega)$ defined by $g_{n}(x)=n^{1 / p} e^{-n x}$. Show that:
(a) g_{n} converges pointwise to zero in Ω for any $p \geq 1$;
(b) g_{n} does not converge strongly to zero in $L^{p}(\Omega)$ for any $p \geq 1$;
(c) g_{n} converges weakly to zero in $L^{p}(\Omega)$ if $p>1$, but not if $p=1$.
3. Prove the Mazur Separation Lemma, which says that if X is a normed linear space, Y a linear subspace of $X, w \in X$ but $w \notin Y$, and

$$
d=\operatorname{dist}(w, Y)=\inf _{y \in Y}\|w-y\|_{X}>0
$$

then there exists $f \in X^{*}$ such that $\|f\|_{X^{*}} \leq 1, f(w)=d$, and $f(z)=0$ for all $z \in Y$. [Hint: Begin by working in $Z=Y+\mathbb{F} w$.]

PRELIMINARY EXAMINATION:
 APPLIED MATHEMATICS - Part II

Jan 16, 2020, 2:40-4:10 p.m.
Work all 3 of the following 3 problems.

1. Let $\Omega=(0,1)^{2}$ and consider the boundary value problem (BVP)

$$
\begin{aligned}
-u_{x x}+u_{x y}-u_{y y} & =f & & \text { in } \Omega, \\
-u_{x}+u_{y}-u & =g & & \text { on } \Gamma_{L}=\{(0, y): y \in(0,1)\}, \\
u & =0 & & \text { on } \Gamma_{*}=\partial \Omega \backslash \Gamma_{L} .
\end{aligned}
$$

Let $H=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\Gamma_{*}\right\}$, which is a Hilbert space.
(a) Find the corresponding variational problem for $u \in H$ and test functions $v \in H$. Also give the function spaces containing f and g.
(b) Show the general Poincaré type inequality: There exists $\gamma>0$ such that

$$
\|\nabla v\|_{L^{2}(\Omega)}^{2}+\int_{\Gamma_{L}} v^{2} \geq \gamma\|v\|_{L^{2}(\Omega)}^{2} \quad \forall v \in H
$$

(c) Show that there is a unique solution to the variational problem.
2. For fixed $T>0$, let $g:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be continuous and Lipschitz continuous in the second argument, i.e., there is some $L>0$ such that

$$
\|g(t, v)-g(t, w)\| \leq L\|v-w\| \quad \forall v, w \in \mathbb{R}^{d}, t \in[0, T]
$$

where $\|\cdot\|$ is the norm on \mathbb{R}^{d}. For any $u_{0} \in \mathbb{R}^{d}$, consider the initial value problem (IVP) $u^{\prime}(t)=$ $g(t, u(t))$ and $u(0)=u_{0}$.
(a) Write this IVP as the fixed point of a functional $G: C^{0}\left([0, T] ; \mathbb{R}^{d}\right) \rightarrow C^{0}\left([0, T] ; \mathbb{R}^{d}\right)$.
(b) Normally, we use the $L^{\infty}([0, T])$-norm for $C^{0}\left([0, T] ; \mathbb{R}^{d}\right)$. Show that the function $\mid\|\cdot\| \|$: $C^{0}\left([0, T] ; \mathbb{R}^{d}\right) \rightarrow[0, \infty)$, defined by

$$
\|\mid\| v \|=\sup _{0 \leq t \leq T}\left(e^{-L t}\|v(t)\|\right),
$$

is a norm equivalent to the $L^{\infty}([0, T])$-norm.
(c) In terms of this new norm, show that G is a contraction.
(d) Explain how we conclude that there is a unique solution $u \in C^{1}\left([0, \infty) ; \mathbb{R}^{d}\right)$ to the IVP for all time.
3. Consider finding extremals to the problem: Find $u, v \in C_{0,1}^{1}([0,1])$ minimizing

$$
F\left(u, v, u^{\prime}, v^{\prime}\right)=\int_{0}^{1}\left(\left(u^{\prime}\right)^{2}+\left(v^{\prime}\right)^{2}+2 u v\right) d x
$$

(a) Find the Euler-Lagrange (EL) equations for this problem.
(b) Reduce the EL equations to a single equation and find its solution. [Hint: The fourth roots of unity are ± 1 and $\pm i$.]
(c) Find the extremal to the problem, up to solving a 4×4 system of linear equations.
(d) If we add the constraint that $\int_{0}^{1} u^{2} v^{\prime} d x=0$, what EL equations do we get?

