PRELIMINARY EXAMINATION:
 APPLIED MATHEMATICS - Part I

August 26, 2019, 1:00-2:30
Work all 3 of the following 3 problems.

1. Let Ω be a compact set in \mathbb{R}^{d} and let $K: \Omega \times \Omega \rightarrow \mathbb{R}$ be continuous and symmetric (i.e., $K(x, y)=$ $K(y, x))$. Suppose that $K \geq 0$, and let the operator T be defined by $T f(x)=\int_{\Omega} K(x, y) f(y) d y$.
(a) State the spectral theorem for a compact, self-adjoint operator.
(b) Show Mercer's Theorem: there is an ON base for $L^{2}(\Omega)$ consisting of eigenfunctions $\left\{e_{j}\right\}_{j=1}^{\infty}$ of T with corresponding eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ such that each $\lambda_{j} \geq 0$ and

$$
K(x, y)=\sum_{j=1}^{\infty} \lambda_{j} e_{j}(x) e_{j}(y)
$$

[The sum is absolutely and uniformly convergent in $L^{2}(\Omega \times \Omega)$, but you need not show this fact.]
(c) Define $\operatorname{Trace}(T)=\int_{\Omega} K(x, x) d x$ and show that

$$
\operatorname{Trace}(T)=\sum_{j=1}^{\infty} \lambda_{j}
$$

2. Let H be a Hilbert space with inner product $\langle\cdot, \cdot\rangle$.
(a) Prove the parallelogram law: For all $x, y \in H$,

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

(b) Prove the Best Approximation Theorem. That is, if $M \subset H$ is nonempty, convex, and closed, and if $x \in H$, then there is a unique $y \in M$ such that

$$
\operatorname{dist}(x, M)=\inf _{z \in M}\|x-z\|=\|x-y\|
$$

3. Let X and Y be NLS's.
(a) Show that if a linear operator $S: X^{*} \rightarrow Y^{*}$ is weakly-* sequentially continuous, that is,

$$
f_{n} \xrightarrow{\text { weak-* }} f \text { in } X^{*} \Longrightarrow S\left(f_{n} \xrightarrow{\text { weak-* }} S(f) \text { in } Y^{*},\right.
$$

then S is bounded.
(b) Given a linear operator $T: X \rightarrow Y$, assume that the dual (or conjugate or adjoint) $T^{*}: Y^{*} \rightarrow X^{*}$ is defined. Show that T^{*} is weakly-* sequentially continuous.
(c) Show that whenever $T^{*}: Y^{*} \rightarrow X^{*}$ is defined, T^{*} is bounded.

PRELIMINARY EXAMINATION:
 APPLIED MATHEMATICS - Part II

August 26, 2019, 2:40-4:10 p.m.
Work all 3 of the following 3 problems.

1. Let $\Omega \subset \mathbb{R}^{2}$ be an open, connected, and bounded domain containing 0 . Let

$$
X=\left\{f \in W^{1,3}(\Omega): f(0)=0\right\} .
$$

(a) Use the Sobolev Embedding Theorem to conclude that X is a Banach space, and $X \neq$ $W^{1,3}(\Omega)$.
(b) Prove the Poincaré-like inequality $\|f\|_{L^{3}(\Omega)} \leq C\|\nabla f\|_{L^{3}(\Omega)}$, for some constant C independent of $f \in X$.
2. Suppose that $\Omega \subseteq \mathbb{R}^{d}$ is a bounded domain with Lipschitz boundary and $\left\{u_{k}\right\}_{k=1}^{\infty} \subset H^{2+\varepsilon}(\Omega)$ is a bounded sequence, where $\varepsilon>0$.
(a) State the Rellich-Kondrachov Theorem. [For the rest of the problem, assume that it holds with nonintegral values for the number of derivatives.]
(b) Show that there is $u \in H^{2+\varepsilon}(\Omega)$ such that, for a subsequence, $u_{k_{j}} \rightarrow u$ in $H^{2}(\Omega)$.
(c) Find all q and $s \geq 0$ such that, for a subsequence, $u_{k_{j}} \rightarrow u$ in $W^{s, q}(\Omega)$.
3. Let Ω be a domain with a smooth boundary. Consider the differential problem

$$
\begin{aligned}
p-\nabla \cdot a \nabla p-\nabla \cdot b \nabla q+d(p-q) & =0 & & \text { in } \Omega, \\
-\nabla \cdot c \nabla q+d(q-p) & =f & & \text { in } \Omega, \\
-(a \nabla p+b \nabla q) \cdot \nu & =g & & \text { on } \partial \Omega, \\
q & =0 & & \text { on } \partial \Omega,
\end{aligned}
$$

where a, b, c, and $d \geq 0$ are bounded, smooth functions, $f \in H^{-1}(\Omega)$, and $g \in H^{-1 / 2}(\partial \Omega)$. Moreover, assume that there is some $\gamma>0$ such that $a \geq \gamma, c \geq \gamma$, and $|b| \leq \gamma$.
(a) Define a suitable variational problem for the differential equations. Be sure to identify your function spaces for p, q, and the test functions.
(b) Show that there is a unique solution to the variational problem.

