PRELIMINARY EXAMINATION: APPLIED MATHEMATICS — Part I August 26, 2019, 1:00-2:30

Work all 3 of the following 3 problems.

1. Let Ω be a compact set in \mathbb{R}^d and let $K : \Omega \times \Omega \to \mathbb{R}$ be continuous and symmetric (i.e., K(x, y) = K(y, x)). Suppose that $K \ge 0$, and let the operator T be defined by $Tf(x) = \int_{\Omega} K(x, y) f(y) dy$.

 (\mathbf{a}) State the spectral theorem for a compact, self-adjoint operator.

(b) Show Mercer's Theorem: there is an ON base for $L^2(\Omega)$ consisting of eigenfunctions $\{e_j\}_{j=1}^{\infty}$ of T with corresponding eigenvalues $\{\lambda_j\}_{j=1}^{\infty}$ such that each $\lambda_j \ge 0$ and

$$K(x,y) = \sum_{j=1}^{\infty} \lambda_j \, e_j(x) \, e_j(y).$$

[The sum is absolutely and uniformly convergent in $L^2(\Omega \times \Omega)$, but you need *not* show this fact.]

(c) Define $\operatorname{Trace}(T) = \int_{\Omega} K(x, x) \, dx$ and show that

$$\operatorname{Trace}(T) = \sum_{j=1}^{\infty} \lambda_j$$

- **2.** Let *H* be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$.
 - (a) Prove the parallelogram law: For all $x, y \in H$,

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

(b) Prove the Best Approximation Theorem. That is, if $M \subset H$ is nonempty, convex, and closed, and if $x \in H$, then there is a unique $y \in M$ such that

$$dist(x, M) = \inf_{z \in M} ||x - z|| = ||x - y||.$$

3. Let X and Y be NLS's.

(a) Show that if a linear operator $S: X^* \to Y^*$ is weakly-* sequentially continuous, that is,

$$f_n \xrightarrow{\text{weak-*}} f \text{ in } X^* \Longrightarrow S(f_n) \xrightarrow{\text{weak-*}} S(f) \text{ in } Y^*,$$

then S is bounded.

(b) Given a linear operator $T : X \to Y$, assume that the dual (or conjugate or adjoint) $T^* : Y^* \to X^*$ is defined. Show that T^* is weakly-* sequentially continuous.

(c) Show that whenever $T^*: Y^* \to X^*$ is defined, T^* is bounded.

PRELIMINARY EXAMINATION: APPLIED MATHEMATICS—Part II

August 26, 2019, 2:40–4:10 p.m.

Work all 3 of the following 3 problems.

1. Let $\Omega \subset \mathbb{R}^2$ be an open, connected, and bounded domain containing 0. Let

$$X = \{ f \in W^{1,3}(\Omega) : f(0) = 0 \}.$$

(a) Use the Sobolev Embedding Theorem to conclude that X is a Banach space, and $X \neq W^{1,3}(\Omega)$.

(b) Prove the Poincaré-like inequality $||f||_{L^3(\Omega)} \leq C ||\nabla f||_{L^3(\Omega)}$, for some constant C independent of $f \in X$.

2. Suppose that $\Omega \subseteq \mathbb{R}^d$ is a bounded domain with Lipschitz boundary and $\{u_k\}_{k=1}^{\infty} \subset H^{2+\varepsilon}(\Omega)$ is a bounded sequence, where $\varepsilon > 0$.

(a) State the Rellich-Kondrachov Theorem. [For the rest of the problem, assume that it holds with nonintegral values for the number of derivatives.]

- (**b**) Show that there is $u \in H^{2+\varepsilon}(\Omega)$ such that, for a subsequence, $u_{k_i} \to u$ in $H^2(\Omega)$.
- (c) Find all q and $s \ge 0$ such that, for a subsequence, $u_{k_j} \to u$ in $W^{s,q}(\Omega)$.
- **3.** Let Ω be a domain with a smooth boundary. Consider the differential problem

$$p - \nabla \cdot a\nabla p - \nabla \cdot b\nabla q + d(p - q) = 0 \quad \text{in } \Omega,$$

$$-\nabla \cdot c\nabla q + d(q - p) = f \quad \text{in } \Omega,$$

$$-(a\nabla p + b\nabla q) \cdot \nu = g \quad \text{on } \partial\Omega,$$

$$q = 0 \quad \text{on } \partial\Omega,$$

where a, b, c, and $d \ge 0$ are bounded, smooth functions, $f \in H^{-1}(\Omega)$, and $g \in H^{-1/2}(\partial\Omega)$. Moreover, assume that there is some $\gamma > 0$ such that $a \ge \gamma$, $c \ge \gamma$, and $|b| \le \gamma$.

(a) Define a suitable variational problem for the differential equations. Be sure to identify your function spaces for p, q, and the test functions.

(b) Show that there is a unique solution to the variational problem.