The University of Texas at Austin

Department of Mathematics

The Preliminary Examination in Probability
 Part I

Fri, Aug 21, 2020

Problem 1. Let X be a nonnegative random variable. Show that

$$
\mathbb{E}\left[X \log ^{+}(X)\right]<\infty \Longleftrightarrow \int_{1}^{\infty} \int_{1}^{\infty} \mathbb{P}[X>u v] d u d v<\infty
$$

where $\log ^{+}(x)=\max (\log (x), 0)$. For extra credit, redo the problem, but with the double integral replaced by the double sum $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathbb{P}[X>m n]$.

Problem 2. Let $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of probability measures on \mathbb{R} such that $\mu_{n} \xrightarrow{w} \mu$, for some probability measure μ on \mathbb{R} and

$$
\sup _{n \in \mathbb{N}}\left|\varphi_{n}\right| \in \mathbb{L}^{1}(\lambda),
$$

where λ is the Lebesgue measure on \mathbb{R} and φ_{n} is the characteristic function of μ_{n}. Show that $\mu_{n} \ll \lambda$ for each $n \in \mathbb{N}$, $\mu \ll \lambda$ and $\frac{\mathrm{d} \mu_{n}}{\mathrm{~d} \lambda} \rightarrow \frac{\mathrm{~d} \mu}{\mathrm{~d} \lambda}, \lambda$-a.e.

Problem 3. Let X be bounded random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, let \mathcal{G} be a sub- σ-algebra of \mathcal{F}, and let \mathbb{Q} be a probability measure on \mathcal{F}, absolutely continuous with respect to \mathbb{P}. Is the following

$$
\begin{equation*}
\mathbb{E}^{\mathbb{Q}}[X \mid \mathcal{G}]=\mathbb{E}\left[\left.\frac{d \mathbb{Q}}{d \mathbb{P}} X \right\rvert\, \mathcal{G}\right] \text { a.s. } \tag{1}
\end{equation*}
$$

always true? If so, prove it. If not, fix the right-hand side of (1), but without using any (conditional) expectations under \mathbb{Q}.

