The University of Texas at Austin Department of Mathematics

The Preliminary Examination in Probability

Part I

Fri, Aug 21, 2020

Problem 1. Let X be a nonnegative random variable. Show that

$$\mathbb{E}[X\log^+(X)] < \infty \iff \int_1^\infty \int_1^\infty \mathbb{P}[X > uv] \, du \, dv < \infty,$$

where $\log^+(x) = \max(\log(x), 0)$. For extra credit, redo the problem, but with the double integral replaced by the double sum $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathbb{P}[X > mn]$.

Problem 2. Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence of probability measures on \mathbb{R} such that $\mu_n \xrightarrow{w} \mu$, for some probability measure μ on \mathbb{R} and

$$\sup_{n\in\mathbb{N}}|\varphi_n|\in\mathbb{L}^1(\lambda),$$

where λ is the Lebesgue measure on \mathbb{R} and φ_n is the characteristic function of μ_n . Show that $\mu_n \ll \lambda$ for each $n \in \mathbb{N}$, $\mu \ll \lambda$ and $\frac{d\mu_n}{d\lambda} \to \frac{d\mu}{d\lambda}$, λ -a.e.

Problem 3. Let X be bounded random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, let \mathcal{G} be a sub- σ -algebra of \mathcal{F} , and let \mathbb{Q} be a probability measure on \mathcal{F} , absolutely continuous with respect to \mathbb{P} . Is the following

$$\mathbb{E}^{\mathbb{Q}}[X|\mathcal{G}] = \mathbb{E}[\frac{d\mathbb{Q}}{d\mathbb{P}}X|\mathcal{G}] \text{ a.s.}$$
(1)

always true? If so, prove it. If not, fix the right-hand side of (1), but without using any (conditional) expectations under \mathbb{Q} .