The University of Texas at Austin Department of Mathematics

The Preliminary Examination in Probability

Part I

Wed, Jan 15, 2020

Part I

Problem 1. Let X be a nonnegative random variable. Show that

$$\mathbb{E}[X\log^+(X)] < \infty \iff \int_1^\infty \int_1^\infty \mathbb{P}[X > uv] \, du \, dv < \infty,$$

where $\log^+(x) = \max(\log(x), 0)$. For extra credit, redo the problem, but with the double integral replaced by the double sum $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathbb{P}[X > mn]$.

Problem 2. Let U be a random variable, uniformly distributed on (0, 1). Is it possible to find a sequence of functions f_n such that the sequence $(U, f_n(U))$ converges in distribution to (U, V) where V is also uniform on (0, 1) and U, V are independent? Give an argument or an example why the answer is no, respectively yes.

Problem 3. Assume that X, Y are two random variables, defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$, such that $X \in \mathbb{L}^p$ and $Y \in \mathbb{L}^q$, where $p, q \in [1, \infty]$ are conjugate exponents. Prove that for any sub- σ -algebra \mathcal{G} of \mathcal{F} we have

$$\mathbb{E}\left[X\mathbb{E}[Y|\mathcal{G}]\right] = \mathbb{E}\left[\mathbb{E}[X|\mathcal{G}]Y\right].$$