Differentiability at the tip of Arnold tongues for
Diophantine rotations: numerical studies and
renormalization group explanations

Rafael de la Llave
Department of Mathematics,
University of Texas at Austin,
University Station C1200, Austin, TX 78712-0257 (USA).
llave @math.utexas.edu

Alejandro Luque
Departament de Matedtica Aplicada I,
Universitat Poliecnica de Catalunya,
Diagonal 647, 08028 Barcelona (Spain).
alejandro.lugue@upc.edu

Jul 2 2010

Abstract

We study numerically the regularity of Arnold tongues cepending to Diophantine
rotation numbers of circle maps at the edge of validity of KAMorem. This serves as a
good test for the numerical stability of two different aloms. We conclude that Arnold
tongues are only finitely differentiable and we also provedesnormalization group ex-
planation of the borderline regularity. Furthermore, wedgtnumerically the breakdown
of Sobolev regularity of the conjugacy close to the critipaint and we provide explana-
tions of asymptotic formulas found in terms of the scalinggarties of the renormalization

group. We also uncover empirically some other regularippprties which seem to require
explanations.
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1 Introduction

The study of circle maps was initiated by Poincaré in [PhiBtivated by Celestial Mechanics
more than a century ago, and has been an active area of botletibal and applied research.
Circle maps arise in many other applications (the readerested in examples of such applica-
tions is referred to [PM80, MP84, Gla91, Ign95, dILP99]).

An important topological invariant for circle maps is théatoon number (see Definition 2.1)
and, given a two-parametric family of circle maps, the sgtaxtimeters for which the rotation
number takes a prefixed value is called Arnold tongue (sortteeasiprefer to reserve the name
“tongue” for rational values only). KAM theory —we refer t@&ion 2 for precise definitions,
statements and references— shows that, for analytic fesroli analytic circle maps satisfying
some mild non-degeneracy conditions, the Arnold tongueesponding to a Diophantine rota-
tion number (see Definition 2.2) is an analytic curve. Thgitedoes not give any information
if the family includes some subfamily for which the maps amalgtic but have a critical value.

The goal of this paper is to study numerically the differabiiity at the boundary (criti-
cal value) of Arnold tongues corresponding to Diophantot@tion numbers and to present a
renormalization group explanation of the phenomena erteoeh. In particular, we show that
Arnold tongues are at lea§t™ at the critical point and we also predict which is (genehdal
the regularity of the tongues at this value using renormaéibn group arguments.

Our numerical study is performed using two different nurwermethods. Both methods are
solidly build, in the sense that there is a mathematicalrghtat validates the results obtained.
In addition, both methods take advantage of the geometrylendynamics of the problem, so
they are reliable as well as efficient.

e Firstly, a method for computing Diophantine rotation numso# circle diffeomorphisms
has been introduced in [SV06] and later extended in [LVO8pltain derivatives with
respect to parameters. This method consists in averaginigetiates of the map (or their
derivatives) together with Richardson extrapolation.

e Secondly, we present a numerical algorithm, based on ideesduced in [Mos66b,
Mos66a] and further developed in [Zeh75, Zeh76], to compud@hantine Arnold tongues.
The papers above, showed that using the group structure @iréblem, one can reduce
a quasi-Newton method to difference equation. We remaittk Wit appropriate choices
of discretizations and algorithms, one can implement tresglewton method in a fast
way. Basically, if we keep at the same time a space disctetirand Fourier discretiza-
tion, the quasi-Newton method reduces to steps that areni@heither in Fourier space
or in real space. We observe that this method gives us thadfaoefficients of the
conjugacy, so that we can study its Sobolev norms, which wesee, give valuable
information about the breakdown.

It is worth mentioning that both methods are designed tagperefficient computations for
non-critical maps. For this reason, approaching critieéligs of the parameters is a good test
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for the behaviour of the algorithms at their limit of valigitMoreover, as a consequence of
the fact that Arnold tongues are differentiable at the @aitpoint (see Proposition 5.1) we can
compute critical values by extrapolation, thus obtainirghkr precision than the one given by
the method in [She82, dILP02].

Renormalization group and scaling ideas provide powedulstfor the study of long term
dynamics, supported by the fact that highly iterated majpgnobserved in small scales, have
forms that are largely independent of the map. These methedsfirst introduced in dynam-
ical systems for unimodal maps ([Fei78, TC78] ). Later, ntoa works in [She82, FKS82]
revealed that cubic critical circle maps exhibit intenegtiuniversal” properties. From the point
of view of rigorous mathematical foundations, many effas lbeen made to develop a renor-
malization group theory that explains the observed pragm(ive refer to DRSS83, Shrs4,
Eps89, Lan84, dF99, SK88, Yam02, Yam03]). Indeed, the eafsgs just mentioned provide
different rigorous formalisms, which are better or worséeslidepending on the context of
study. The goal of this paper is not to discuss on these appesaand, for convenience, we
shall use different approaches according to our needs.

To prove differentiability of Arnold tongues at the critigaoint, we study scaling relations
of the derivatives of the rotation number with respect tapaters using cumulant operators.
To this end we apply results reported in [DEdILO7, DEdILOBJturns out that the asymptotic
properties of cumulant operators characterize the growtheodifferent derivatives of the ro-
tation number (see Proposition 5.1). This allows us to @britre first derivative of Arnold
tongues.

To establish a bound for the borderline regularity of an Adriongue, we give an explana-
tion of the observed phenomenon based on a renormalizatop gicture. In this well-known
picture, there is a non-trivial (universal) critical polrdving stable and unstable invariant man-
ifolds that organize the dynamics of the renormalizatioarapor. Then, we use the well-known
Fenichel theory under rate conditions for normally hypé&domvariant manifolds (we refer
to [Fen74]) to obtain a sharp estimate of the differentigbdf Arnold tongues in terms of the
spectrum of the linearized renormalization operator. leeme conclude that Arnold tongues
areC”, with r being a number such that

log &

r> ,
~ logy
whered is the leading unstable value of the linearizaton of a remdiration operator at the
fixed point andy is also another scaling factor related to renormalizatiparator (see the
discussion in Section 5.2). In particular, these“am@versal numbers”that do not depend on
the family. We note that, even if the bounds are only lowemutsy there are reasons to believe
that they are sharp and, as we will see this is consistentomittnumerical findings.

The contents of the paper are organized as follows. In Se2twe recall some fundamental
facts about circle maps and Arnold tongues. Section 3 istdevio describe the main numer-
ical methods used in the paper. Some high-precision nual@@nputations are presented in
Section 4 in order to give evidence of the differentiabibifyArnold tongues. Then, the goal

6] > |v] > 1, 1)
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of Section 5 is to give some explanations of the observed gghena in terms of the renor-
malization group. Finally, in Section 6, we present somadtamtl numerical computations of
Arnold tongues using the methods described in Section 3fi@dings are briefly summarized
in Section 7.

2 Rotation numbers and Arnold tongues

In this section we briefly recall some basic definitions andcepts related to circle maps (for
details see [dMvS93, KH95]). We represent the circlfas R/Z and defineDift} (T), r €
[0, +00) U {00, w}, the group of orientation-preserving homeomorphismiB of classC” with
inverse of clas€”. Concretely, ifr = 0, Diffﬁ(’ﬂ‘) is the group of homeomorphisms @f
if » > 1, with r € (0,00)\N, Diff ] (T) is the group ofC!"/-diffeomorphisms whosgr|th
derivative verifies a Holder condition with exponent |r|; if r = w, Diff(T) is the group of
real analytic diffeomorphisms.

Given f € Diff ] (T), we can lift f to R by means of the universal cover: R — T, given

by 7(z) = & (mod 1), obtaining &" map f that makes the following diagram commute

R—f>R

ﬂl lw WOf:fOW.

T

Moreover, we hqvé(x +1) — f(x) = 1 (sincef is orientation-preserving) and the lift is
unique if we ask forf(0) € [0,1). From now on, we choose the lift with this normalization so
we can omit the tilde without any ambiguity and we can refehtdift of a circle map.

Definition 2.1. Let f be the lift of an orientation-preserving homeomorphismhaf ¢ircle.
Then, theotation number off is defined as

p(f) == lim M.

[n]—oo n

(@)

Let us recall some standard properties related to the ootatumber (we refer to [KH95]
for details). Itis well known —already proved by Poincaréhat limit (2) exists for ally, € R,
is independent of, and satisfiep(f) € [0, 1). If we consider the rigid rotatioRy(z) = = + 0,
thenp(Ry) = 6. The rotation numbep is continuous in th&€-topology. If we consider the
1-parameter family, — f, = R, o f, with f € Diff)(T), thené(u) := p(f,,) is an increasing
function of x and is stricly increasing whet{.) ¢ Q.

The rotation number is invariant under orientation-preisgy conjugation, i.e., for every
f,h € Diff)(T) we have thatp(h™' o f o h) = p(f). Then, it is natural to investigate
whether a particular circle map is conjugated to a rotatfopartial result was given by Denjoy
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(see [Den32]), ensuring that ff € Diff?(T) (actually, it suffices that the map has derivative
of bounded variation) withy( f) € R\Q, thenf is topologically conjugate to the rigid rotation
Ry, i.e., there existg € Diff (T) satisfying

fon=mnoR,y. (3)

In addition, if we requiren(0) = =, for fixed z,, then the conjugacy is unique. More
interesting is to ask about the regularity of this conjugatilt is well-known that the answer
depends on arithmetic properties of the rotation number.

Definition 2.2. Givend € R, we say that is a Diophantine numbeof (C, 7) type if there exist
constants” > 0 andr > 2 such that for any/q € Q

'0—]—9'> C.
ql lql

(4)

We will denoteD(C, 7) the set of such numbers afitlthe set of Diophantine numbers of any
type.

The first result about smooth conjugation was given in [Ajn@here is was proved that
any analytic and close-to-rotation circle mawith Diophantine rotation number is analytically
conjugate toR,s). This result was extended in [Her79] to any mapes Diff {(R). There
have been subsequent improvements — the class of Diophamtmbers allowed, extensions to
analytic maps, to lower differentiability, etc.

The following result is a particular case of the results ind¢82].

Theorem 2.3.If f € Diff{(T) has rotation number in the clagg (which contains strictly
Diophantine numbers) thefiis analytically conjugate to the rigid rotatioRR,, ).

Analogous results fof € Diff 7 (R) where given in [Yoc84a, KS87, KO89, SK89]. As a
sample, we mention the recent result [KT09], which provithessharpest result in low regular-
ity. These papers are particularly relevant for us, sineg tielate the conjugacy to properties
of renormalization.

Theorem 2.4.1f f € Diff | (T) has Diophantine rotation numbex /) € D(C, 1) for2 <7 <
r < 3andr —7 < 1, thenf is C'*"~"-smoothly conjugate to the rigid rotatiaR,y). In this
result,r = 3 means thaif € Diff ""(T).

The theory of smooth equivalence of critical circle mapsdbess extensive literature. The
interested reader is referred to [dFdM99, dFAMO0O0], whiehkesed on renormalization ideas.
In this paper we will consider the following class of criticaaps.

Definition 2.5. The space of critical circle maps of ordek + 1, that we denote ag?*+!, is
defined as the set of analytic functiofighat are strictly increasing ifR and satisfy
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o fla+1)=f(z)+1.
o fU(0)=0forall 0 < j <2k, andf(0)f@+1(0) # 0.
Now let us consider the following family of circle maps

A _ €

L) =1 +w— 5 sin(27x), (5)
where(w,¢) € [0,1) x [0, 1] are parameters. Notice that this family satisff§§ € Diff{(T)
fore < 1andf;'; € €. Then, we obtain a functiofw, ) — p(w,e) := p(f.) given by
the rotation number of the family (the map at the criticalmas strictly mcreasmg) Then, the
Arnold tongue®f (5) are defined as the sets

Ty = {(wag) : p(w,e) - 0}7
foranyd € [0, 1).

It is well known that if¢ € Q, then generically/} is a set with interior; otherwisd is
a continuous curve which is the graph of a functior- w(e), with w(0) = 6. Furthermore,
if & € D, the corresponding tongue is given by an analytic curve [Re99]). To avoid
confusions, we point out that the name Arnold tongue is sonast used in the literature to
refer only to the set%, whenf € Q.

Fore = 1 we have thaff,,; € ¢ for everyw € [0,1) —but is still an analytic map— and
it is known (we refer to [dILP0O2, Yoc84b]) that the conjugettito a rigid rotation is at most
Holder continuous. The main question that we face in thigeps if the functiore — w(e), for
0 € D, keeps some differentiability at= 1, something which is not predicted by KAM theory.

To illustrate several aspects of universality we seleceiofamilies of circle maps in our
computations (some interesting computations and prasedi these families were reported
in [dILP02]), namely thecubic critical family

11—k

C () — _ (ks
we(r) =2+ w . (/{ sin(27x) +

sin(47m)) : (6)

and thequintic critical family

L sin(4mx) + ?mlg 1 sin(67r:c))) : (7)

fO(x) =2 +w-— Qi <Ii sin(27x) +
’ 7r

Both families satisfy thafc f%. € Diff(T) for e < 1. Furthermore, foe = 1 we have
that /5. € ¢ for 0 < 5 < 3 andfc € 015 for x = 3. Analogously, for: = 1 we have that
feecforl <x<? andfﬁ6 e ¢ fork =2

Finally, Iet us observe that the families (5), (6) and (7)rawa-generic in the sense that their
maps contain a finite number of harmonics. For this reasoronsider also the Arnold family
with infinite harmonics

o & e (1 — k)sin(27x)
wel@) =z +w 21 1 — Kkcos(2mx) ’

(8)

for0 <k < 1.
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3 Numerical methods

In this section we describe the two main numerical methodswle use in the present paper.
Firstly, in Section 3.1 we include a brief survey of metho@sealoped in [LV08, SV06] to
compute rotation numbers of circle maps and derivativels reispect to parameters. Secondly,
in Section 3.2 we introduce a method (adapting ideas predent[CdILO9, dILHS, Mos66b,
Mos66a, Zeh75, Zeh76]) to compute numerically Arnold tagtogether with a very accurate
approximation of the conjugacy at every point. Both methar@svery efficient and fast, as we
summarize next:

¢ If we computeN iterates of the map, then the averaging-extrapolation otesapported
by Proposition 3.1 allows us to approximate the rotation benwith an error of order
O(1/NP+1) wherep is the selected order of averaging (compared ith /N) obtained
using the definition). Similarly, we can approximate detiixes of orderd with an error of
orderO(1/NP*1=4), Algorithm 3.2, corresponding to this procedure, requifésVp) =
O(N log, N) operations (see Remark 3.4).

e If we useN Fourier coefficients, then the method in Section 3.2 allawagproximate
the conjugacy of the circle map to a rigid rotation with an@x@ntially small error. The
idea is to perform a Newton method where every correctiorsistg of a small number
of steps, each of which is diagonal either in real space oouriEr space. Fast Fourier
Transform allows passing from real space to Fourier spatkesoost of one step of the
Newton method is 0O(N log, V) operations and(/N) in memory. Implementation is
described in Algorithm 3.5.

3.1 An extrapolation method to compute rotation numbers andderiva-
tives

For the sake of completeness, we review here the methodageeeln [SV06] for computing
Diophantine rotation numbers of analytic circle diffeoploisms (theC” case is similar) that
was later extended in [LV08] to compute derivatives withpess to parameters.

Let us considey € Diff* (T) with rotation numbeé = p(f) € D. Notice that we can write
the conjugacy of Theorem 2.3 a6r) = x + £(x), £ being a 1-periodic function normalized in
such a way tha§(0) = z, for a fixedz, € [0, 1). Now, by using the fact that conjugates to
a rigid rotation, we can write the iterates under the lift@ofvs

f"(x0) = f"(n(0)) = n(nd) = nf + Y &>, VneZ, (9)

kEZ
where the sequenc{ék}kez denotes the Fourier coefficients@fThen, we have

fn(x(]) — 2o — 0+ = Z g 2mikn®

keZ*
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that allows computing modulo terms of orde©(1/n). The idea of [SV06] is to average the
iteratesf™ (z) in a suitable way, obtaining a smaller quasi-periodic remer.

As a motivation, let us start by considering the sum of thé Nrsterates undef (expressed
asin (9))

N N(N +1 ) 2wk (1 _ o2mikNO
SK(P =30 o) — ) = Mg S0 eSS o)
n=1 kEZ. keZ

We observe that the factor multiplyirtgin (10) grows quadratically with the number of ite-
rates, while the next term is linear iN, with constant4;, = — Zkez* fk Moreover, the
quasi-periodic sum remains uniformly bounded since, byoltygsisg is Diophantine and is
analytic. Thus, we obtain

2

TSN =0+ 2 A+ O(1/NY), (11)

N +1

that allows us to extrapolate the valuefofiith an errorO(1/N?) if, for example, we compute
Sy (f) andSiy(f). Higher order extrapolation follows in a similar way (seeyédithm 3.1).
We refer to [SVO06] for the precise formulas and the combinatadetails.

Besides the rotation number, we are interested in compdgnigatives with respect to pa-
rameters. Let us consider a famjlyc I C R — f, € Diff*(T) depending’?-smoothly with
respect tou. The corresponding rotation numbers induce a funcied — [0, 1) given by
O(n) = p(f.). Itis well-known that the functiod is continuous but non-smooth: generically,
there exist a family of disjoint open intervals 6f with dense union, such théttakes dis-
tinct constant values on these intervals (a so-called Beyihircase, see for example [KH95]).
However, the derivatives éfare defined in “many” points in the sense of Whitney.

Concretely, let/ C I be the subset of parameters such that) € D (typically a Cantor
set). Then, from Theorem 2.3, there exists a family of coagigs,. € J — 7, € Diff 7(T),
satisfying f, o n, = 1, o Ry, that is unique if we fix),(0) = z. Then, if f, is C* with
respect tou, the Whitney derlvatlves)unu and D{LH, forj = 1,...,s, can be computed by
taking formal derivatives with respect toon the conjugacy equation and solving small divisors
equations thus obtained. Actually, we know that, if we defiit€’, 7) as the subset of such
thatd(p) € D(C, 1), then the mapg € J(C, 1) — n, andp € J(C,7) — 6 can be extended
to C¢ functions on/, whered = d(s, 7), provided that is big enough (see [Van02]).

To computeD?6( 1), thed-th derivative with respect ta at 119, with d > 0 —let us remark
that we are including formally the cas®) (1) = 0(0)—, we introducerecursive sumsf
orderp (we omit the notation regarding the fact that the map is atalliaty = 1)

DiSY = DE(fN (o) — x0), DILSE = ZDdSp L
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and the correspondirgyeraged sums
~ N +p -1
d _ d
oist - (V1) s
Then, the following result holds (we refer to [SV06] fér= 0 and [LV08] ford > 0) by
induction and using the regularity properties of the coapygn Theorem 2.3.
Proposition 3.1. If 0(ug) € D and the derivatived)ﬂ@(uo) for j = 0,...,d exist, then the
following expression holds

p—d 1d AP
o l
DISK =Dlo+> o+ DIEP(N), (12)

=1

where the coefficient®? A7 are independent oN and the remaindeerjEP(N) is of order
O(1/NpP=d+L),

Therefore, according to formula (12), we implement thedi@ihg algorithm to extrapolate
thed-th derivative of the rotation number.

Algorithm 3.2. Once an averaging order is selected, we taky = 2q iterates of the map, for

.....

thed-th derivative of the rotation number (|nclud|ng the calse 0) using the formula

Dlo=el,  ,+o@R Py el Z M DR s

q,p,m
7=0

where the coefficientém) are given by
QU(I+1)/2
qm = (T
d(1)o(m —1)

with §(n) := (2" — 1)(2" 1 —1)--- (2! — 1) for n > 1 and§(0) := 1. The operato©?
corresponds to the Richardson extrapolation of orgder d of equation(12).

(13)

¢,p,p—d

Remark 3.3. To approximate derivatives of the rotation number, we regjto compute ef-
ficiently the quantitieng(f;L(x)), i.e., the derivatives with respect to the parameter of the
iterates of an orbit. To this end, algorithms based on remerand combinatorial formulas are
detailed in [LVO8].

Remark 3.4. Given an averaging ordep and a number of iterated = 27, the cost of com-
the optimal value ob to use in the extrapolation ig ~ ¢ — (7 + 1)log,(q) —see details
in [SV06]— we obtain that the computational cost of AlgaritB.2 isO(29p) = O(N log, N).
Furthermore, let us remark that the implementation of thgoathm does not require to store
any intermediate value, so it has negligible memory cost.



R. de la Llave and A. Luque 11

In this case, we obtain the following heuristic expressianthe extrapolation error (more
details are given in [SV06])

10 d
,p,pfd| < op—d+1 |@q,p,pfd -

@d

|fo0 — @fj o oyl (14)

Notice that if we select an averaging orgerthen we are limited to extrapolate with order
p — d. Moreover,p is the maximum order of the derivative that can be computed.

3.2 A Newton method for computing Arnold tongues

Another numerical approach to compute Arnold tongligsvith € D, is based in a posteriori
methods introduced in [Mos66b, Mos66a]. This has the adegthat it allows obtaining at the
same time an approximation of the conjugacy to a rigid roteéind its Fourier coefficients. Let
us assume that (for certairwhich is not explicitly mentioned) the conjugacy relation(8) is
satisfied with certain error, i.e., givefy € Diff7(T) andd we have an approximate conjugacy
h such that

fu(h(x)) = h(z + ) + e(2), (15)

wheree : T — T is an error function. To implement a Newton method, we carstdrrections
w=w+A,andh = h + A, which are obtained by solving (at least approximately) the
following linearized equation

fo(h(@)An(x) = Ap(z + 6) + Ou fu(h(2)) Aw = —e().
Following [Mos66b, Mos66a] we write
Ap(z) = h'(z)p(x),
thus obtaining
fo(h(@)W (z)p(x) = W (x + O)p(x + 0) + O fuo(h(2)) A = —e(). (16)
Notice that taking derivatives at both sides of equatior) (& get
fo(h(@))W (z) = W' (x +0) + €'(2),
and introducing this expression into (16), we obtain (usheg?’'(z + 6) # 0)

OL(h)A + o)
h'(x +6)

modulo quadratic terms in the error. Solutions of cohomiclligequation (17) are easy to find
using Fourier series for periodic functions

f(.T) _ Z fke%rikm’

keZ

p(a) =z +0) =v(z),  v(z):= 17
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where we denotéf], = f, the average of. Thus, we obtain that —the correction i, is
obtained from the compatibility conditidn|, = 0—

[6] T R U,

A, =——tdr S
R Y e

k e 7\{0}, (18)

the solution being unique if we fix the average,. Cohomological equation as (17) are stan-
dard in KAM theory (see for instance [Rus75, dILO1]) andsitwell-know that under Dio-
phantine conditions given by (4) we can control the analtytaf ¢ —optimal estimates where
provided in [RUs75]— and the convergence of the obtainedicatic scheme. The reader inter-
ested in convergence proofs is referred to [Arn61, dILO1sbGb, Mos66a, Zeh75, Zeh76].

According with the above scheme, we can implement an efti@ggorithm in order to
perform one step in the correction of the Arnold tongue. Thénndea is to take advantage of
the fact that solutions of cohomological equations obthing18) —and also the computation
of derivatives such as’'— correspond to diagonal operators in Fourier space. Otgebeaic
manipulations can be performed efficiently in real spacethack are very fast and robust FFT
algorithms that allows passing from real to Fourier spaoel (&ice versa”). Accordingly, if
we approximate the periodic functions involved by usivig-ourier modes, we can implement
an algorithm to compute the object with a cost of ord&V log, N) in time andO(N) in
memory. We refer to [CdIL09, JO09, dILHS] for related algloms in several contexts.

All computations presented in this paper have been perfdusmg truncated Fourier series
up to orderN = 29, with ¢ € N, corresponding to the discrete Fourier transform assextitat

.....

discussion, we will denote
X R 1 N-1
(i} =FFTn({f}),  with  fi=D  fe 2, (19)
7=0

wheref, € R, fy = fi_, and, for convenience, we sg¢t, = 0. Conversely we denote
{f;} = FFT ({fi}):

Algorithm 3.5 (One step of Newton methodgiven a circle magy,, € Diff(T) and a rotation
numberd, let us assume that we have an approximate conjugacy = = + £(x) to a rigid
rotation Ry, which is given byV Fourier coefficientd ¢, } (see Remarkl9)). Then, we perform
the following computations:

1. Estimation of the error.
(2) Compute{¢;} = FFT,!({&:}).
(b) Compute the Fourier coefficientsgff= ¢ o Ry usings! = £,
(c) Compute(¢/} = FFTy! ({¢]}).
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(d) Compute{h;} and{A%} usingh; = j/N + ¢ andhf =6+ j/N + &',
(e) Compute{e;} usinge; = f.(h;) — hf.

2. Solution of the cohomological equation.
(a) Compute the Fourier coefficients@fusings, = 2mikéy.
(b) Compute the Fourier coefficients gt usingé)? = £} e,

(c) Compute(¢’} = FFT! ({£}).
(d) Comput€{a;} and{b;} by means of

ay = —e;/(1+€0) and by = =L fulhy)/(1+€0).

(e) Compute{a,} = FFTy({a;}) and{be} = FFTx({b;}).

() Computed, = —ag/bp.

(9) Compute{vy} usingoy, = ay + b, .

(h) Compute{;} usingy = /(1 — e*™*%) and {;} = FETH ({24 }).

3. Correction of the conjugacy.

(@) Compute(¢]} = FFT ({4}).
(b) Compute the new approximately conjugdey; usingé; « &; + (1 + &) ;.

(c) Compute(&,} = FFTx({&}).

Remark 3.6. Consider the-Sobolev norm given by

1Sl = [[D"fllr2 = (Z(%k)”lfﬁ) : (20)

k>0

Then, we observe that Algorithm 3.5 allows us to monitor tr@ution of these norms along
Arnold tongues. Therefore, we can study the breakdown ofagty of the conjugacy when
approaching the critical point (see computations in Sett.

Remark 3.7. To apply Algorithm 3.5, we recall that the conjugacy cor@sging to the point
(w,e) = (0,0) is given by{&,} = 0. We start the computations using, = 2° Fourier
coefficients and we control the number of coefficients atitimestep by studying the size of
the last/V/2 coefficients in{{ }. Notice also that truncation to finite dimension may produce
spurious solutions and one possibility to avoid this spusieolutions is by using adaptive steps
in the Newton method. We refer to [CdILO9] for details.
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Figure 1: Graph ofs — w(e) corresponding to the Arnold tongu®, for the fixed rotation numbef =

(V5 - 1)/2.

4  First numerical explorations

Using the approach described in Section 3.1, some Arnolgiuesi;, of Diophantine rotation
number were approximated in [SV06] using the secant methddirg[LVV08] using the Newton
method. To do that, one fix@#sc D and solves the equatigriw, ) — @ = 0 by continuing the
known solution(d, 0) with respect tae (we refer to these references for details). Here we are
interested in the continuation of such solutions whapproaches the critical value= 1. We
have found empirically that, when approaching the critmaiht, it is better to use the secant
method to avoid the phase-locking regions.

As implementation parameters we take an averaging grder9 and N = 29 iterates of
the map, withy < 23. Computations have been performed using a GNU C++ compiktize
multiple arithmetic has been provided by the routigead-double packagef [HLBO5], which
include aquadruple-doublelata type of approximately 64 digits.

First we compute the Arnold tongue, with 6 = \/32‘1, corresponding to family (5). The
continuation step ia is taken a$.01 if ¢ < 0.99. Beyond this value, we consider the points
1 —0.95™1°, for 1000, 1001, . . .,2010. Notice that the selected points approach exponentially
fast to the critical point and they are defined using the ifoact /10 just following a criterion
of parallelization.

In Figure 1 we plot the graph of this Arnold Tongue, and in téi plot of Figure 2 we
show, inlog,-log,, scale, the derivatives of the rotation number with respect ande along
the computed tongue.

Fitting these computations we obtain the following asyrtiptexpressions close to the crit-
ical point (fore ~ 1)

Dop(w(),e) =~ % D.p(w(e),2) =~ % (21)

In the right plot of Figure 2 we show the estimated extrapofaerror by means of for-
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Figure 2:Left: Graph of the derivative®g, (1 — ¢) ~— log,, Dup(w(e), <) (upper graph) antbg, (1 — ¢)

log,q D:p(w(e), ) (lower graph) alondly, for the fixed rotation numbef? = (v/5 — 1)/2. Right: We plot
e — logo(e(+)), wheree(-) stands for the heuristically estimated error —see Equdfidj— in the computation

of the rotation number and its derivatives.

-0.017468

-0.00185

-0.0019 |-
-0.01747

-0.00195
-0.017472

~— -0.002
3 -0.017474

-0.00205

-0.017476
-0.0021 |-

-0.017478 -

-0.00215

-0.01748 -0.0022
0

L L L L L L L L L L
0.001 0.002 0.003 0.004 0.005 0.006 0 0.001 0.002 0.003 0.004 0.005 0.006

1—¢ 1—¢

Figure 3:Left: Graph of the derivativél — ¢) +— ' (¢) alongTy, with § = (v/5 — 1) /2, computed as (22) from
the data in the left plot of Figure 2. Right: Graph of the dative(1 —¢) +— w” (¢) alongTy, with § = (v/5—1)/2,
computed as (23).

mula (14). We note that asymptotic expansions (21) are nateldilby a log-periodic factor.
This is a prediction of the renormalization group picturedded, the renormaliation group pic-
ture predicts that if we scale the parameters by a fagtibre regularity features scale by another
factor. This scaling relations are satisfied by power lawstiplied by a log-periodic fucntion
of log-periods. These log-period corrections were an important took ihR@i2].

Fore < 0.99, the errors in the computations are of the order of the pigcisf the machine.
When we are far from the critical point —by “far” we mean a diste larger thaf.001— we
can compute the rotation number with more than 25 digits,thagrecision of our computa-
tions decreases when approaching the critical point.
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7 T T T T -2.695

logo(w"(€))

L L L L
-4 -35 -25 .5 -4 -25

logyo(1 —¢) logyo(1 —¢)
Figure 4: Left: Graph inlog;, — log;, scale of the derivative®,, ,.p(w(¢), ) (upper graph)D,, .p(w(e),¢)
(middle graph) andD, .p(w(¢),e) (lower graph) alondly. These derivatives satisfy an expression like (21)
(modulo periodic corrections) with an exponent6435 rather than0.15604. Right: Graph of the derivative
logyo(1 — €) + log,(w” (¢)) alongTy, with § = (/5 — 1)/2, computed as (23).

The observed growth of the derivatives given in (21) suggtistt the map — w(e) is C!
ate = 1 —in the left plot of Figure 3 we show the derivative of this mapse to the critical
point— since (). €)

/ Dsp wle), €
W'(e) Do) ) (22)

Generalization of formula (22) to higher order is straightfard. However, the growth of

higher order derivatives of the rotation number does nowalls to characterize more deriva-

tives ofw(e) ate = 1. For example, the second derivative is given by

w//(g) _ _(wap(CU(g)’ 5)(,0'(8) + 2Dw€p(w(€)7 5))(,0/(6) . Dsep(uJ(é‘), 8).
Dyp(w(e),e)

From our numerical experiments we observe that the secatet derivatived,p, D..p
and D..p grow much faster thab,p (see the left plot of Figure 4), so a necessary condition
to ensure that”(¢) exists is that some precise cancellations take place indheerator. In-
deed, we observe that’(¢) is bounded (see the right plot of Figure 3) so the cancelation
just mentioned are taking place. Moreover, we see that gnrerescillations that seem almots
log-periodic but they decay, albeit very slowly. Figure 4)le can therefore expect that the
Arnold tongue has a regularity slightly bigger thdh As we will see, the renormalization
group picture to be discussed in Section 5.2 predicts thatthve isC?0-%°,

(23)

Remark 4.1. We notice that the extrapolation error in the computatioseond order deriva-
tives increases dramatically when approaching- 1, and one may thing that the oscillations
observed correspond to this error. However, due to the aoyupf the computations shown in
the left plot of Figure 3, we can approximaté(s) using finite differences thus obtaining the
same graph shown in the right plot of Figure 3.
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5 Explanations in terms of Renormalization Group

Numerical computations described in Section 4 suggesDimgthantine Arnold tongues main-
tain some differentiability at the critical point (outsittee domain of applicability of KAM the-
ory), even though these sets correspond to level curveswiaidon —the rotation number—
whose derivatives blow-up at the critical point.

Our goal now is to justify the differentiability observedn particular, in Section 5.1 we
use the properties of cumulant operators to characterzgtbwth of the first derivatives of
the rotation number with respect to parameters. We will kaethe asymptotic behaviour of
these derivatives is the same. Then, in Section 5.2 we giwxplanation of the borderline
regularity based on a renormalization group picture. Themuse the well-known Fenichel
theory under rate conditions for normally hyperbolic ingat manifolds to give a sharp esti-
mate of the differentiability of Arnold tongues. This depsron the spectrum of the linearized
renormalization operator and it is at le@s$t .

5.1 Renormalization Group and cumulant operators formalisn

In this section we recall some basic ideas, regarding reali@ation group theory, required

to understand results reported in [DEdILO7, DEdILO8], whérne effect of dynamical noise

in one-dimensional critical dynamical systems (namelymodal maps of the interval at the

accumulation of period-doubling and critical circle mapskstudied. In these references, a
renormalization scheme was developed for the system

Ty = f(xnfl) + O-gn (24)

where f is either a unimodal or a critical circle mag, are zero mean independent random
variables, and@ > 0 is a small parameter which measures the size of the bare. nidigegoal
was to obtain some scaling relations for the Wick ordered srim (called “cumulants” by
statisticians) of the effective noise, and to show thatehera well defined scaling limit.

It turns out that the same asymptotic properties of cumubgrerators characterize the
growth of the different derivatives of the rotation numbsed Proposition 5.1), which is the
interest of this paper. The goal of this section is to use thérgy properties obtained for these
derivatives to obtain the following result.

Proposition 5.1. Let us consider a two parametric family,c) — f, . of analytic circle
diffeomorphisms, such that fer= 1 we have thatf,; € ¢?**1. Let us consider the Arnold

tongueTy of rotation numbef) = @ Then, under certain hypothesis on the renormalization
group (see the discussion below), we have that the quotient

Da[fﬁ,e](x)
Dw [fg,e] (:E)

is uniformly bounded with respect tg for every(w, €) in the closure offy.
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For the purposes of this section, we will resort only to som&dproperties of the scaling
limits of renormalized maps that we summarize next (we f[llcan84]). From the well-known
relation between the golden mean and the Fibonacci sequdngecz, given by Fy, = 0,
F,=1andF,,, = F, + F,_4, it follows that

Fy
0 = lim : F.0 — F,_, = (—=1)"'o,

and also that the rotation number of

foy(@) = ff(x) — Fos

equals(—1)""'0". Notice that forn large p(f.,)) is small, so we have that;,(z) ~ = as
r ~ 0. We want to concentrate on the behaviourfgf, near the critical point (recall that
f'(0) = 0) and we therefore magnify as follows: let us introduge) = f(,)(0)~! and the
n — 1th renormalization off

Rulfl(@) := fu(2) = am-1) fim) (2/@n-1))- (25)
Remark 5.2. Sincep( f(n)) = (—1)""'0", we have that
(=" (o (2) =) > 0

forall n € Nandz € R. In particular, forz = 0 we obtain tha{—1)""'«y,) > 0. Therefore it
follows that each functiorf, (x) is increasing inc and satisfies,,(z) < z.

Numerical experiments (see the references given in Set)i@uggest that for every €
N there is a universal constant, satisfyinga, < —1, and an universal functioif,, both
depending or&, such that

1) The sequence of raties, = a(,+1)/ o) converges tax..
2) The sequence of functiorfs converges tq, (non-trivial fixed point).

Then, let us observe thgit (0) = a,—1)f(n)(0) = e, ', and we obtain
a, = lim f,(0)"" = £,(0)7! (26)

(for example, for the cubic case= 1 we haven, ~ —1.2885745...). Moreover, using that
Foo1=F,+ F, 1, it follows thatf(n+1) = f(n) o f(n—l) and alsof(n+1) = f(n—l) o f(n). After
a suitable rescaling by,,), from these expressions we obtain, respectively,

fo1(z) = O‘nfn(anflfnfl(O‘rzla;ilx))v

fora(z) = ano‘n—lfn—l(agilfn(arjlx))'

Then, taking limits air — oo we have that the statements 1) and 2) imply that
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3) The universal functiotf, is a solution of the functional equations

fuol@) = aufulonfula?n)),  fulz) = ol fu(al fula"n)).

Moreover, it turns out thaf, is an analytic function in:***! (we refer for example
to [ORSS83)).

Remark 5.3. For the cubic critical case, there are unpublished compuaissisted proofs (we
refer to [Mes84, LdIL]) that establish the existence of thesarsal functiony..
Definition 5.4. Given a critical mapf as in Definition 2.5, we introduce

n

Ala,n) =Y _(f"7) o fi(x).

j=1
It is straightforward to check that
Aw,m+n) = (™) o f*(x)A(z,n) + A(f"(x),m). 27)

A renormalization scheme fak follows from introducingA,y(z) = A(x, F,,) and us-
ing (27),F, = F.1 + F and f(,)(z) = [t (x) — F,_1, thus obtaining

Ay (@) = flu1y © fin2)(2)An—2) () + An—1) (fin—2) (2))-

Then, after the scaling,(z) = A\ (1), we introduce the following operators (which are
calledLindeberg-Lyapunov operators

)\n o >\2 . Ln Mn
()= () = (G 0)

Lo[N(z) =f, 1 (Cn-2fa-a(0n-10m-22)) a1y 0, 257)
Ma[N(@) =M -2 fu-a(0 0, 051)).

As it is discussed in [DEdILO7, DEdILO8], an important coggence of the exponential
convergence of,, to f, is that the Lindeberg-Lyapunov operatdts converge exponentially
fast to an operatok, asn — oo. Moreover, the operatois,, are compact in an appropriate
space of analytic functions and they preserve the cone o phcomplex functions, such that
their components are strictly positive when restrictechtoreals. Hence, we can apply Krein-
Rutman theorem (see for example [Sch71]) an obtain that

given by

Theorem 5.5. Let us consider a critical circle map of ord@t + 1, having rotation number

p(f) =0 = \/52_1’ as described in Definition 2.5. Denote ky, = K, and letp, be the

spectral radius of the operators,, for everyn € N U {cc}. Then,
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pn IS a positive eigenvalue &, .

The rest ofpec(KC,,)\{0} consists of eigenvalues whose modulus is less than

A pair of positive function&/,,, ¢,,) is an eigenvector of,, if and only if the correspond-
ing eigenvalue ip,,.

We have thap, > o?* > 1 and that there is a constant> 0 such that for all positive
pairs of functiong A, \,) we have

< A(x) < cpl ( An ) =K, K ()\2) .
)\n—l )\1

Proof. This statements are justified in [DEdILO7, DEdILO08] spetifyalso the corresponding
domains of definition which are not discussed here. O

Now, let us make use of Theorem 5.5 to characterize the grofvthe derivatives of the
rotation number at the tip of Arnold tongues. To this end, wesider the 2-parameter family
of maps(w, ¢) — f, . given by (5), and we observe that the derivatives with resigec and
e of the iterates of the may, . are written as (in order to simplify the notation we omit the
dependence on ande in the map)

n

Dy[f"(@) =Y _(f"7) o fi(2)&uo0 filx), p=we

j=1

where (of course they computations are valid for any famiilgneps satisfying similar proper-
ties as (5))

Glr) = uf@) =1,  &(2) = Of(x) = % in(2rz). 28)
Let us observe that we have an analogous of (27), which isdiye
Duf™ (@) = (f™) o f*(@) Dulf")(x) + Dylf™] o f*(2) (29)

and also that there exist constaatsc, > 0 that allow us to controD,,[f"] as follows
al(z,n) < |Du[f"(2)] < 2A(z,n), p=we.

Therefore, using the properties of Theorem 5.5, we obtain {al)

cic 'l KD ()] < cacpl, p=wie,
thus concluding that (at= 1)
D.[f"|(x) -
—— | < ¢y .
D,[fr](x)| — o
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Remark 5.6. For the particular example of the Arnold family, we have ttegt expression@8)
allow us to write

D)) = Awm), D@ < 5= Alrn)

thus obtaining a theoretical bourjd’(1)| < 0.159155. Indeed, the computations presented in
Figure 2 show thatw’(1)| ~ 0.01748 . . ..

5.2 Geometric interpretation and bound of the differentiahility

To describe a global picture of the renormalization groupneed to take into account the
dependence on the rotation number. For the purposes of éisemirpaper, it suffices to recall
the construction inQRSS83] based on commuting pairs. In the following, we wikhsider
renormalization both in the space of analytic diffeomospis and in the space of analytic
cubic critical maps.

The renormalization group transformati@®y,,, applied to a particular circle homeomor-
phism f depends upom, wherem is such thatn < 1/p(f) < m + 1 —in other wordsyn is
the first term in the continued fraction pf/f). This transformation is introduced as follows:

Definition 5.7. Consider the space,, of pairs (£, n) of analytic homeomorphisms Bfwhich
satisfy the following conditions

1) €(0) = n(0) + 1.
2) n(£(0)) = &£(n(0)).
3) 0<£(0)<1

4) €"(n(0)) > 0.

5) ¢"~H(n(0)) <0.

6) if &'(x) = 0orn/(x) = 0forz € [(0),£(0)], thenz = 0 andn'(0) = £'(0) = 1"(0) =
¢"(0) =0, but&”(0) andn” (0) are nonzero.
7) (€n)'(0) = (n€)'(0), and if¢’(0) = 0, then(£n)™(0) = (7)™ (0).

Then, the renormalization map,,, acting ony,, is defined by
R (&(z),n(x)) = (aﬁml(n(w’/ama&m1(?7(5(33/&))))

wherea = 1/(£€™71(n(0)) — £™(n(0)).
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Rigid rotations

/

6cQ 6 c R\Q 0eQ

Figure 5:Picture of the renormalization group acting on the spacealic circle maps with a critical boundary.
A is the stable manifold of the non-trivial fixed poifit restricted to the critical space3 is the slow unstable
manifold of A.

This construction —using conditions 1), 2) and 3)— allowsdasissociate a homeomor-
phism f = f¢, on the unit circle to each pait,n) € ¢, by definingf = ¢ on[(0), 0] and
f =mnon|0,£(0)] and identifying the end points of the interya(0), £(0)]. Conditions 4) and
5) guarantee that the rotation number of this circle mapesin < 1/p(f:,) < m + 1 and
also thatn < —1. Furthermore, it is not difficult to see that conditions 1)),3), 6) and 7) are
preserved byR,,.

Analytic diffeomorphism®Diff¥(T) and cubic critical mapg?® are embedded in the space
Umen®m just by considering the map — (f, f — 1). Notice also that, according with Defi-
nition 2.5, we can think o€ as a cell of lower dimension, invariant under the actiorRgf,
attached to the boundary of the space of circle maps.

The behaviour of the rotation number under the action oféghemmalization transformation
is characterized in the following Lemma (we refer @§SS83] for details)

Lemma5.8.1f m < p(fe,) <m+ 1, thenp(fr,.cn) = 1/p(fey) —m.

An immediate consequence of this result is the following:amrh € Diff ¥ (T) (respectively

f € € has golden mean rotation numbeif) = 6 = ¥3-L if and only if R,(f) does.
Consequently, the spaces

{f € DIff{(T) : p(f) =0} and {f e : p(f) =0}
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ecQ 6 c R\Q 0eQ

Figure 6:Arnold tongues of rotation numbérare obtained by intersecting the invariant maniSidith a given
two-parametric familye,, . of circle maps.

are invariant undeR; (actually, the restriction of the transformati@®, coincides with the
local transformatiorR, given by (25), described in the previous section). Noti tve are
restricting the discussion for the golden mean but otheatiat numbers can be considered.
Indeed, Lemma 5.8 motivates that if the continued fractibthe studied rotation number is
eventually periodic, then it makes sense to search for a figat in the renormalization group
transformation.

Now, let us describe the geometric picture (see Figure 5gsponding to the action of the
renormalization transformatioR just introduced. Firstly, let us recall (see Remark 5.3} tha
in the space of cubic critical maps there is a fixed pgjrdf the renormalization group (usually
called thenon-trivial of strong-couplingfixed point). Secondly, in the space of non-critical
circle maps there is another fixed point (usually calledal or weak-couplingixed point),
given by Ry(z) = = + 6. Concretely:

e The non-trivial fixed pointf, is hyperbolic, having a two-dimensional unstable manifold
which is a universal 2-parameter family of circle maps andtams the curve of rigid
rotations in its closure. Moreover, the stable manifoldfphas codimension two and
consists of all elements @ with rotation numbe®.

e The trivial fixed pointRy has a one-dimensional unstable manifold given by the curve o
rigid rotations. Moreover, the stable manifold®f has codimension one and consists of
all non-critical maps with rotation numbér Let us observe that this stable manifold gets
arbitrarily close to the non-trivial fixed point. Notice thaecalling Herman’s Theorem,
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Figure 7:Graph of(1—¢) +— w(e), close to the critical point for several families. Tonguethie plots correspond
tof,,forl <a <b<b5.

all the non-critical maps of rotation numbérmust converge to the trivial fixed point
under renormalization.

The spectrum of the linearized transformationfatestricted to the tangent space ©f
consists of an eigenvalug with [§| > 1 and a countable number of eigenvalues of modulus
less than one. In addition, one can see that the eigenspsoeiasd ta) is transverse to the
subspace of maps of rotation numierThe remaining unstable direction, which is transverse
to €3, corresponds to an eigenvalygwith |§] > |y| > 1.

Call A = Wi n ¢? the stable manifold off, in the critical space and calf the slow
unstable manifold ofd (associated tg). Notice thatB is invariant under renormalization and,
since it is not contained i®, it consists in maps having rotation number golden meancelen
B C W, , wherelWp, “in the stable manifold ok, underR, (otherwise contradicting Herman's
Theorem). Therefore, from Fenichel’s theory of normallypésbolic invariant manifolds under
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Figure 8:Graph of(1—¢) +— w(e), close to the critical point for several families. Tonguethie plots correspond
t00,,forl <a<b<5.

rate conditions (we refer to [Fen74]) we conclude that tlyeilarity of 5 is C", with

,> logé)
~ logy

|0] > || > 1.

Of course, this bound for the regularity Bfmakes sense only at the boundary with the critical
manifold, sincéV is an analytic manifold.

In general,r is only upper bound for the regularity but in many cases ithiarg. Notice
also that this is a universal number since it depends onlhespectrum of the renormalization
operator.

Finally, we observe that Arnold tongues, curves of congtatattion number, are obtained
by intersecting the manifold with a given two-parametric familg,, . of circle maps (see
Figure 6), chosen in such away tl&at, = {R,, w € [0,1)} and¢,, ; C €3. Then, we identify
the Arnold tongudy with {f € €,. N B : p(f) = 0}.
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Figure 9:Graph of the derivativél — ¢) — w'(¢), close to the critical point for several families. Tonguestie
plots correspond t6, , for 1 < a <b <5.

Remark 5.9. For the case o) = ‘/52‘1, we have thaty ~ 2.83362... andy = a® ~
1.6604242 . . .. This values predict that the Arnold tongue’is -0

Remark 5.10. Of course, the properties discussed in this section are rgenEor particular
families of circle maps we can observe higher regularityetepng for example if we fall in a
submanifold of4 with stronger stable eigenvalues.

6 Further numerical investigations

To enhance the universality of the results observed in @edtand the explanations reported in
Section 5, we present additional computations related t@lrtongues performed by means of
Algorithms 3.2 and 3.5. We think that the large amount of catapons shown in this section
illustrates that both numerical methods are very efficist, and robust.
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(c) Family (7) withx = 0.9 —quintic—. (d) Family (7) withx = 1.5 —septic—.

Figure 10:Graph of the derivativél — ¢) — w’(¢), close to the critical point for several families. Tongues i
the plots correspond i@, ;, for 1 < a <b < 5.

Along this section we consider familids, ) — f, . given by (5), (6), (7) and (8) for
several values of the parameter We recall thatf, . € Diff/(T) if ¢ < 1 and, depending
of the parameter, we have thatf,,; € € € or €. For fixed rotation numbers that define
Arnold tongues, we have selected quadratic irrationale®@farmé, , = (1/b> + 4b/a — b)/2,
for 1 < a < b < 5, that have periodic continued fraction giventy, = [0; a, b, a,b, .. .]. Itis
clear thatd, , € D(C, 2) for everya, b, but with a smaller constaxt whena andb increase.

6.1 Additional computations of Arnold tongues

As implementation parameters for Algorithm 3.2 we take araging ordep = 7 andN = 29
iterates of the map, with < 22, asking for tolerances af0—2% in the computation of the ro-
tation number and0~%% in the convergence of the secant method. Computations resm b
performed using 32-digit arithmetics (provided by the detdiouble data type from [HLBO5]).
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The continuation points are taken as= 1 — 0.933254", forn = 0,1,...,100. As in Sec-
tion 4, these selected points approach exponentially dettet critical point, in order to obtain
equispaced points in logarithmic scale.

In Figures 7 and 8 we show the computed Arnold tongues w(e) close to the critical
points. The plots in Figure 7 correspond to cubic familiedethose in Figure 8 correspond to
quintic and septic families. We observe that all these cuare clearly differentiable. Indeed,
in Figures 9 and 10 we plot the corresponding derivatives w’'(¢).

The computed values(1) andw’(1) of these Arnold tongues are given in Tables 1 and 2.
We point out that some of the value$1) were also provided in [dILPOZ2] for the golden mean
0 = (v/5—1)/2, using the method in [She82]. Of course we obtain the sanuétsesven though
it is worth mentioning that the method in [SV06] is much fasgince evaluating the interval
phase locking for the continued fraction of the rotation bemis not required. Precisely, this
is the reason why we can systematically carry this study fiberént rotation numbers in a
straightforward way.

Let us recall that derivatives of the rotation number witpect to parameters blow-up when
we approach the critical point. Actually, renormalizatignoup theory predicts an asymptotic
expression of the form (here we use a generic parametee, w)

ay, 1
D, p(w(e),e) ~ a—oF <1 + P,(1— 5)) + (’)(m) (30)
for certain constants,,, 3, 3, where the exponents. > (3. depend only on the order of
criticality and the rotation number. The functidty satisfies thai’,(6(1 —¢)) = P,(1 — ¢),

so it is periodic in logarithmic scale. Exponentsfor the blow-up of the derivative® ,p and

D.p in the studied families are given in Tables 3 and 4, respelgtiv

In order to approximate this exponents we simply perforrmadr fit at the derivatives in
log — log scale, avoiding the oscillatory corrections mentionedi®fNevertheless, we observe
a good agreement between exponents computed for the saat@matumber and order of
criticality. Notice also that we have consistent resultsegponding to the exponents computed
independently foiD,,p and D.p. We remark that the oscillatory terms increase with the iorde
of criticality, making the fit of the results more complicdie

We want to stress again that both Algorithms 3.2 and 3.5 ddepénd on the particular ro-
tation number that we pretend to study. To illustrate this ¥&e consider the Arnold family (5)
and we select different rotation numbets by taking 350 equispaced points in the interval
z, € [0,7/6] andf, = sin(z,) € [0,0.5]. Since Diophantine numbers have large Lebesgue
measure, we expect that the selected points have good atithpnoperties. However, we check
this fact by computing the corresponding Brjuno functioniveg by (34)— and we accept the
rotation number i3(6,,) < 4.

Computations are performed using both Algorithms 3.2 aBdBtaining the same results.
The only difference is that the first one convergesdo~= 1 and the second one does not,
even though in the second case we can extrapolate very welbibiew (1) from the computed
non-critical ones (recall that the curved§™).
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0 Family (5) Family (6),x = 0.3 Family (6),x = 0.7 Family (6),x = 4/3
[0;1,1,1,1,...] | 0.60666106347011 0.62687105954673 0.6148131852529196%625982733
[0;2,1,2,1,...] | 0.38212565637946 0.36062325061216 0.3730896903273494%340275142
[0;2,2,2,2,...] | 0.41886498641897 0.39990316709114 0.4126413294716923%81476623671
[0;3,1,3,1,...] | 0.29707881009281 0.26853619235278 0.2802972432295622%73230250643
[0;3,2,3,2,...] | 0.31609640893852 0.29086464077852 0.3014276667357536409821671957
[0;3,3,3,3,...] | 0.32387366602535 0.30045276849149 0.3100684801765341&7333729677
[0;4,1,4,1,...] | 0.25358922337337 0.21528631778779 0.231440082994298736285806134
[0;4,2,4,2,...] | 0.26481615381242 0.22870487487661 0.244237476958799518260647474
[0;4,3,4,3,...] | 0.26924114574461 0.23383349744976 0.2492770695956398@R76070052
[0;4,4,4,4,...] | 0.27150235886599 0.23639389072267 0.2518589394831699%0245821370
[0;5,1,5,1,...] | 0.22798444384638 0.18222910335518 0.201896022039196748847255173
[0;5,2,5,2,...] | 0.23517195185003 0.19163068831675 0.210265723049277226231561090
[0;5,3,5,3,...] | 0.23793193615175 0.19519345236594 0.2134753586122173%0267886214
[0;5,4,5,4,...] | 0.23932398378781 0.19699876644569 0.21509641059390748B273261402
[0;5,5,5,5,...] | 0.24012917730632 0.19805419119542 0.216036225557047520864834701

0 Family (8),x = 0.5 Family (7),x = 0.6 Family (7),x =0.9 Family (7),x = 1.5
[0;1,1,1,1,...] | 0.61567565128166 0.63313304089504 0.6163305017957190@254922276
[0;2,1,2,1,...] | 0.37113750513616 0.35835245630167 0.3745908029557303%1%429363417
[0;2,2,2,2,...] | 0.41381227245236 0.38862276635541 0.4067447583001627241458766426
[0;3,1,3,1,...] | 0.27421337809363 0.27479777089192 0.289410988120353936875990077
[0;3,2,3,2,...] | 0.29703674674343 0.29439459617477 0.306538897255535045311426901
[0;3,3,3,3,...] | 0.30642250791340 0.30167316749381 0.3132669479219854%/863104247
[0;4,1,4,1,...] | 0.22212813733449 0.23346214811924 0.2468436033951609@R398272223
[0;4,2,4,2,...] | 0.23613533662923 0.24254965099543 0.256779091603151510831370341
[0;4,3,4,3,...] | 0.24165845987386 0.24599201459714 0.260532294437401726856639141
[0;4,4,4,4,..] | 0.24450197931748 0.24766934120454 0.262383747063921828876978394
[0;5,1,5,1,...] | 0.18996231415208 0.20506531290792 0.222047167422469222344245490
[0;5,2,5,2,...] | 0.19928758150802 0.21038885255896 0.228145699799559580855394143
[0;5,3,5,3,...] | 0.20286298652571 0.21214803717788 0.230363002672159716890551844
[0;5,4,5,4,...] | 0.20467586441013 0.21294397395156 0.231428127745679716887851977
[0;5,5,5,5,...] | 0.20573171184568 0.21336968574448 0.2320204353014998@253700254

Table 1:Critical valuesy(1) for several rotation numbers and families.

The computed Arnold Tongues are shown in Figure 11. Sincéotngues approach each
other when the parameterincreases, we have different tones in the plot. The whiteezon
corresponds to resonant Arnold tongues or phase-lockimigns. Actually in Swi88] it was
proved that the set of parameter values correspondingatonal rotation numbers has zero
Lebesgue measure and iné@%] that it has Hausdorff dimension strictly smaller tha¢ @and
greater or equal to/3. This is observed in Figure 12 by plotting the singular digrdistribution
of the Arnold tongues at the critical point, which is obtalnesing the prograrR for Statistical
Computing. The density of these tongues becomes singutlae atitical point because the set
of irrational Arnold tongues is a foliation which sends a skepositive measure into a set of
zero measure.
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Family (5) Family (6)x = 0.3 Family (6),x = 0.7 Family (6),x = 4/3
[0;1,1,1,1,...] | -0.017480008706 0.015844188888 -0.005297174685 -04B58%5033
[0;2,1,2,1,..] 0.035398636056 -0.005231158488 0.018425583068 0.0887890
[0;2,2,2,2,..] 0.002917141025 -0.024409767066 -0.003682733151 0.@338B32
[0;3,1,3,1,..] 0.066670897459 0.013323865197 0.036049987734 0.1126678
[0;3,2,3,2,..] 0.042388154205 0.001567670798 0.018392446240 0.0725018
[0;3,3,3,3,..] 0.027734098090 -0.004640726796 0.007791789630 0.0423394
[0;4,1,4,1,..] 0.087891436301 0.022485184504 0.049963021585 0.14%2927
[0;4,2,4,2,..] 0.069844498563 0.009352515130 0.035722919701 0.1166352
[0;4,3,4,3,..] 0.058858174400 0.001208860914 0.027133714502 0.0945035
[0;4,4,4,4,..] 0.051387391565 -0.004267696674 0.021301234528 0.07986852
[0;5,1,5,1,..] 0.102996438306 0.025491194823 0.061178543520 0.16614569%
[0;5,2,5,2,..] 0.089527362287 0.015715539045 0.049640825551 0.14383280
[0;5,3,5,3,...] 0.081292422821 0.009941703525 0.042680129321 0.1285348
[0;5,4,5,4,..] 0.075645185852 0.006143284836 0.037929898442 0.1106896
[0;5,5,5,5,..] 0.071653884023 0.003531956411 0.034574498276 0.11@p820

Family (8),x = 1/2

Family (7),x = 0.6 Family (7),x = 0.9

Family (7),x = 1.5

L OUT OU O O b b i s WO W W NN DOt Ot Ot O O s s s R W W W =D

[0;1,1,1,1,...] | -0.004171196679 0.027537364113 -0.001674483085 -0MEB8937
[0;2,1,2,1,..] 0.012391201596 0.002825329200 0.031358660599 0.0898362
[0;2,2,2,2,..] | -0.000748943517 -0.039280048359 -0.013909345625 0BEH323
[0;3,1,3,1,..] 0.023194322552 0.017569479600 0.059575574792 0.1502020
[0;3,2,3,2,..] 0.011959968014 0.001897136580 0.024632033662 0.0927156Q
[0;3,3,3,3,..] 0.005029281641 -0.011861643071 0.003861749221 0.0289841
[0;4,1,4,1,..] 0.031707953463 0.066236772883 0.083123456845 0.1888367Y
[0;4,2,4,2,..] 0.022116085364 0.043358356155 0.057560268438 0.1483868
[0;4,3,4,3,..] 0.016276476088 0.024207462318 0.039912128324 0.1129%621
[0;4,4,4,4,..] 0.012222150602 0.010405137696 0.027873412931 0.09202838
[0;5,1,5,1,..] 0.038896089329 0.082957511062 0.101218153327 0.2082302
[0;5,2,5,2,..] 0.030722981151 0.059962122538 0.081693151984 0.1764a09
[0;5,3,5,3,...] 0.025793951377 0.042755733323 0.067215229427 0.1563023
[0;5,4,5,4,..] 0.022388211725 0.031797997816 0.057242185950 0.1428324
[0;5,5,5,5,...] 0.019944270297 0.024829041191 0.050500445834 0.1326582

Table 2:Derivativew’ (1) for several rotation numbers and families.

6.2 On the breakdown of Sobolev regularity

Now we present some computations using Algorithm 3.5 titlte the blow-up of Sobolev
norms of conjugacies when approaching the critical poingaiA, we consider the families
(w,e) — f.. given by (5), (6), (7) and (8) for several values of the par@me, and we fix
rotations numbers of the forfl) , = (\/b? + 4b/a — b)/2,for1 <a < b < 5.

The idea is to continue numerically these Arnold tonguesitodng the evolution ofr-
Sobolev norms of the conjugacy —see Equation (20). Corlgréfte:.(x) = = + £.(z) is the
conjugacy to a rigid rotation of the circle mdp,.) . satisfyingf, ). o h. = h. o Ry, then we
compute the value, ||, for 100 points- € [0, 2].

In Figure 13 we plot some of the computed norms in order tatitate their blow up. Then,
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Family (5) Family (6) Family (8) Family (7)

k=03 k=07 kK=4/3| k=1/2 | k=06 k=09 k=15
0.1552 | 0.1556 0.1550 0.2124 0.1557 | 0.2112 0.2114 0.2444
0.1749 | 0.1747 0.1748 0.2330 0.1739 | 0.2395 0.2323 0.2687
0.1660 | 0.1645 0.1659 0.2257, 0.1665 | 0.2260 0.2283  0.256(
0.2060 | 0.2038 0.2057 0.2683 0.2048 | 0.2642 0.2670 0.295§
0.1811 | 0.1788 0.1806  0.2411] 0.1795 | 0.2406 0.2430 0.2607
0.1871 | 0.1849 0.1865 0.2491] 0.1858 | 0.2482 0.2476 0.2874
0.2382 | 0.2412 0.2385 0.2982 0.2386 | 0.2814 0.2985 0.3704
0.2021 | 0.2061 0.2019 0.2506 0.2015 | 0.2490 0.2561 0.2829
0.2035 | 0.2072 0.2031  0.2596 0.2021 | 0.2208 0.2485 0.3167
0.2151 | 0.2182 0.2142  0.2831] 0.2136 | 0.2542 0.2761 0.313Z
0.2702 | 0.2694 0.2700 0.3256 0.2708 | 0.3371 0.3293 0.3753
0.2259 | 0.2250 0.2255 0.2773 0.2248 | 0.2851 0.2794 0.317§
0.2226 | 0.2244 0.2237 0.2844 0.2241 | 0.2828 0.2741 0.3293
0.2299 | 0.2320 0.2306 0.3192 0.2319 | 0.3206 0.3177 0.3471
0.2465 | 0.2458 0.2461 0.3167] 0.2455 | 0.3273 0.3121 0.3510

oo oo oo oo oo o oo oo
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CUOT O UT O s s R W0 W W NN
CUB WM M WD W = N

Table 3:Exponents, in the blow-up of derivatives of the rotation number withpest tow, for several rotation
numbers and families.

0 Family (5) Family (6) Family (8) Family (7)

k=03 k=07 k=4/3| k=1/2 | k=06 k=09 k=15
0.1562 | 0.1571 0.1566 0.2115 0.1564 | 0.2123 0.2370 0.2414
0.1789 | 0.1664 0.1786 0.2378 0.1786 | 0.2426 0.2612 0.312§
0.1645 | 0.1666 0.1665 0.2301 0.1663 | 0.2248 0.2254  0.2507
0.2048 | 0.2116 0.2064 0.2813 0.2111 | 0.2538 0.2428 0.3024
0.1851 | 0.1891 0.1809 0.2460 0.1780 | 0.2183 0.2254 0.2701]
0.1871 | 0.1877 0.1877 0.2341] 0.1881 | 0.2413 0.2552 0.2774
0.2484 | 0.2425 0.2425 0.2901 0.2326 | 0.2802 0.2938 0.3780
0.2152 | 0.2223 0.2188 0.2615 0.2105 | 0.2430 0.2567 0.2849
0.1947 | 0.2113 0.1950 0.2571] 0.2026 | 0.2348 0.2436 0.3004
0.2146 | 0.2193 0.2175 0.2828 0.2174 | 0.2840 0.2753 0.3374
0.2794 | 0.2880 0.2874 0.3388 0.2814 | 0.3441 0.3257 0.3767
0.2214 | 0.2246 0.2396 0.2809 0.2224 | 0.2867 0.2829 0.314%
0.2347 | 0.2322 0.2358 0.2843 0.2306 | 0.2867 0.2866 0.3213
0.2349 | 0.2349 0.2386 0.3216 0.2411 | 0.3217 0.3162 0.3475
0.2468 | 0.2369 0.2446 0.3209 0.2416 | 0.3487 0.3201 0.3483

oo o oo oo o oo oo oo
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Table 4:Exponent3, in the blow-up of derivatives of the rotation number withpest toe, for several rotation
numbers and families.

in a similar way as discussed in relation with expressio3, (®e fit the first order term of the
following law

lede = 0 (14 20 -9) + 05— @)

for some constantd.(r), B.(r), whereB,(r) is a universal number in the sense that depends
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Figure 11: Arnold tongues corresponding to few hundreds of Diophantitation numbers for the Arnold
family (5). As usual, we plotv in the horizontal axis andin the vertical axis.

only on the rotation number and the order of criticality. Sotomputations are given in Table 5.

We want to point out that (31) can be related to the renorra@im group, thus obtaining a
heuristic formula for the prediction for the exponetsr) in terms of the scaling properties
and the rotation number (we follow the arguments in [CdI)03p this end, we seX = 1 — ¢
and we consider the family of circle maps —for convenience omit the dependence on the
parametew in the family—

Hhiz)=z4+w— %g@m;),

whereg is a 1-periodic function, satisfying/(0) = 2, as in the examples given by (5), (6),
(7) and (8). Notice that the critical point corresponds\te= 0. The key observation is that
renormalization sends

hoa(z) =~ ahy(ox), (32)

whereq, is the universal constant given in (26)is the eigenvalue of the non-trivial fixed point
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Figure 12:Density distribution of the Arnold tongues at the criticaliqt e = 1. We do not include the vertical
axis since the value depends on the smoothing parametehng dfistogram, and this plot pretends to represent
qualitatively that the density of the critical points beassingular.
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Figure 13:Evolution of ther-Sobolev norm —for- = i/50, with i = 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 and
100— of the conjugacy to a rotation along the Arnold tongue cspomding t = (v/5 — 1)/2. Left: Family (5).
Right: Family (6) withx = 4/3.

transversal to the critical space amds the exponent of convergence of the continued fraction
of the fixed rotation numbet.
For example, we justify (32) for the case of the golden mean (/5 — 1)/2 (in this case
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Figure 14:Left: we plotr — B.(r), whereB,(r) is the exponent in the expression (31), corresponding to the
blow-up of ther-Sobolev norm of the conjugacy close to the critical poimttfe golden meafi = (v/5 — 1)/2
and the Families (5), (6) for = 0.3,0.7,4/3, (7) for x = 0.6,0.9,1.5 and (8) forx = 0.5. Right: we plot

log;o(1—€) +— log;y(1.42(1 —&)* ™|, ||,.), for@ = [0;5,1,5,1,..

andr = 77/50. The coefficientd.42 and0.741 correspond to subtract the linear fitlisg, ,-log,, scale.

., corresponding to Family (6) with = 0.3

Family (5) Family (6),x = 0.3 Family (6),x = 4/3 Family (7),x = 0.6
67 2 i 67 2 s 67 2 i 67 72 i
0 50 50 50 50 50 50 50 50 50 50 50 50
[0;1,1,...] | 0.412 0.510 0.606 0.419 0.508 0.605 0.366 0.428 0.496 0.364 0.431 0.499
[0;2,1,...] | 0.433 0.527 0.623 0.431 0.526 0.622 0.383 0.450 0.534 0.390 0.457 0.524
[0;2,2,...] | 0.420 0.515 0.612 0.423 0.515 0.612 0.373 0.439 0.503 0.376 0.442 0.513
[0;3,1,...] | 0.459 0.559 0.661 0.462 0.562 0.663 0.408 0.478 0.551 0.406 0.479 0.55%
[0;3,2,...] | 0.437 0.526 0.626 0.437 0.530 0.624 0.390 0.463 0.521 0.393 0.460 0.524
[0;3,3,...] | 0.429 0.529 0.623 0.435 0.532 0.623 0.383 0.455 0.518 0.385 0.451 0.514
[0;4,1,...] | 0.494 0.595 0.701 0.491 0.593 0.702 0.439 0.522 0.597 0.436 0.524 0.594
[0;4,2,...] | 0.455 0.550 0.649 0.455 0.548 0.643 0.434 0.484 0.55] 0.434 0.491 0.564
[0;4,3,...] | 0.446 0.543 0.643 0.442 0.532 0.624 - - - - - -
[0;4,4,...] | 0.447 0.543 0.648 0.443 0.538 0.636 - - - - - -
[0;5,1,...] | 0.622 0.625 0.739 0.520 0.628 0.741 - - - - - -
[0;5,2,...] | 0.474 0.566 0.660 0.475 0.573 0.663 - - - - - -
[0;5,3,...] | 0.466 0.562 0.658 0.468 0.561 0.657 - - - - - -
[0;5,4,...] | 0.468 0.563 0.664 0.466 0.567 0.665 - - - - - -
[0;5,5,...] | 0.479 0.572 0.680 0.475 0.575 0.674 - - - - - -

Table 5:ExponentB. (r) in expression (31) —for = 67/50, 72/50 and77 /50— corresponding to the blow-up
of ther-Sobolev norm of the conjugacy close to the critical poiot,deveral rotation numbers and families.

o is known to be also the golden mean). To renormalize the fRafor A ~ 0, we compute
L (ha(z) — Fmy = ho(z + F,0 — Fiq) >~ hy(z +6")
and multiplying at both sides hy,, ;) we obtain

Ro-1[fl(am-nha(2)) = a@m-1)ha(z +0").
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SinceX ~ 0 we can writeR,,_[f,] ~ f,»-1, and, introducing the scaled variahle= z /6",
we get an expression like (32) for the conjugégy of f., to a rotation.

In general, using (32) we computé. ||, =~ a.||hr(o-)], = o"~3||hy||,. Finally, introduc-
ing the first order of (31) into this relation for the norms, eanclude that

1\1 log a,
Bur)=—(r—5 )2l - 5% (33)
2)logy logvy

and thatP, is log-periodic of periodog .

For example, for a cubic family and fixing to be the golden mean, we have that-
0.61803...andy = o? ~ 1.66042. . ., so that the slope of the affine expression (33) is expected
to be~ 0.949. ... This prediction agrees with our numerical experiments.

In the left plot of Figure 14 we show the expond®r) as a function of the index for
several families of circle maps (we takl@s the golden mean). We observe a very good agree-
ment between maps of the same criticality. Similar resuksodtained for the other selected
guadratic rotation numbers. In addition, in the right plbE@ure 14 we illustrate the periodic
correction predicted by the renormalization group (seaitdein the caption).

6.3 Relation of the blow up exponents with Brjuno function

In previous sections we have characterized the first asymomgponents in the blow up of
the derivatives of the rotation number (see Section 6.1)thed-Sobolev regularity of the
conjugation to a rotation (see Section 6.2). It turns out thgiven a certain family— these
exponents depend on the arithmetic properties of the ostatumber. However, looking at
formula (33), we have a little intuition on this dependenicess and~ depend ord in a very
complicated way.

In order to study the dependence of the expongntnd B, (r) on the rotation number, we
make use of the Brjuno function, which measures how much ltdopne a number is. Brjuno
function can be computed recursively using the followingrfala

B(0) = —logh + B0~ 1), 0 € (0,1). (34)

Firstly, in Figure 15 we ploB3(0) — [, for several of the studied families. It seems that
the exponen(, is larger when the Brjuno function increases (i.e., whenrttation num-
ber is “closer” to be a rational number), and that this betrais organized in families. In
all cases we obtain an upper boundary curve which is giverhbyrotation numberg =

0;2,2,...], [0;3,3,...], [0;4,4,...] and [0;5,5,...], respectively. On the other hand, we
observe a lower boundary curve that corresponds to theiantaumbers) = [0;1,1,.. ],
0;2,1,..],]0:3,2,..],[0;4,2,..],[0:3,1,.. ], [0;5,2,.. ], [0;4,1,.. ] and[0; 5, 1, .. ], al-

ways appearing in this order.
Secondly, in Figure 16 we consider the exponBntr) in the blow up of ther-Sobolev
norm. The behavior observed is very similar to that of theomgmts of the blow-up of the
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Figure 15:We showB(w) — f., whereB(f) is the Brjuno function —computed using (34)— afdis the
exponent in the blow-up of derivatives of the rotation numbih respect tav —introduced in (30). The upper
boundary curve correspondséto= [0;2,2,...],[0;3,3,...],[0;4,4,...] and[0; 5, 5, .. .], respectively. The lower
boundary curve correspondsfo= [0;1,1,...], [0;2,1,...], [0;3,2,...], [0;4,2,...], [0;3,1,...], [0;5,2,...],
[0;4,1,...] and[0;5,1,...], respectively.

derivatives of the rotation number with respect to paramseténalogous results have been
obtained for the other families studied in this paper.

7 Conclusions

In this study we have used two numerical methods to computeaceurately Arnold tongues,

given by curvesv(e), as well as the corresponding derivativ€és). We have found that the

methods work reliably and efficiently even close to the valoi: where the circle maps cease
to be diffeomorphisms and the conjugacies of the circle ntagsrigid rotation cease to be
smooth.
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Figure 16:We showB(w) — (., whereB(0) is the Brjuno function (see text for details) afidis the exponent

in the blow-up of derivatives of the rotation number withpest tow. The upper boundary curve corresponds to
0 =10;2,2,..],10;3,3,...],[0;4,4,...] and[0; 5,5, .. ], respectively. The lower boundary curve corresponds
tof = [0;1,1,...],[0;2,1,..],[0;3,2,.. ], [0;4,2,.. ], [0;3,1,.. ], [0;5,2,.. ], [0;4,1,...] and[0;5,1,.. ],
respectively.

This allows us to extrapolate with confidence to the breakdand to uncover some new
phenomena. Our main findings are:

1. We have found that the Arnold tongues remain finitely défeiable at the blow up and
computed the optimal regularity, which is a universal numbe

2. We have found that Sobolev norms of the conjugacy to mtatblow up as powers. The
exponents of the blow up are also universal numbers and gyl affinely on the index
of the Sobolev space. We have found dlsgperiodic corrections to the scalings and we
show that these corrections are predicted by the renoratigizgroup.

3. The exponents of blow up of several quantities are relae¢le Brjuno function of the
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corresponding rotation number.

Given the analogy between breakdown of smooth conjugacidsphase transitions, we
present renormalization group explanations of 1) and 2)lligive quantitative agreement
(about to 3 figures) with the computed numerically exponeftse observation 3) remains
a challenge for theoretical explanations.
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