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Jǐŕı Lipovský
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Abstract. We show how to find the coefficient by the leading term of the resonance

asymptotics using the method of pseudo orbit expansion for quantum graphs which

do not obey the Weyl asymptotics. For a non-Weyl graph we develop a method how

to reduce the number of edges of a corresponding directed graph. With this method

we prove bounds on the above coefficient depending on the structure of the graph for

graphs with the same lengths of the internal edges. We explicitly find the positions of

the resolvent resonances.
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1. Introduction

Quantum graphs have been intensively studied mainly in the last thirty years. There is

a large bibliography, we refer e.g. to the book [BK13] and the proceedings [AGA08] and

the references therein. One of the studied models are quantum graphs with attached

semiinfinite leads. For this model, the notion of resonances can be defined; there are two

main definitions – resolvent resonances (singularities of the resolvent) and scattering

resonances (singularities of the scattering matrix). For the study of resonances in

quantum graphs we refer e.g. to [EŠ94, Exn13, Exn97, KS04, BSS10, EL07, EL10].

The problem of finding resonance asymptotics in quantum graphs has been

addressed in [DP11, DEL10, EL11]. A surprising observation by Davies and Pushnitski

[DP11] shows that the graph has in some cases fewer resonances than expected by

the Weyl asymptotics. Criteria, which can distinguish these non-Weyl graphs from

the graphs with regular Weyl asymptotics, have been presented in [DP11] (graphs

with standard coupling) and [DEL10] (graphs with general coupling). Although

distinguishing these two cases is quite easy (in depends on the vertex properties of the

graph), finding the constant by the leading term of the asymptotics (which is closely
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related to the “effective size” of the graph) is more difficult since it uses the structure

of the whole graph.

In the present paper we expressed the first term of non-Weyl asymptotics using the

method of pseudo orbits and found bounds on the effective size which depend on the

structure of the graph. The paper is structured as follows. In the second section we

introduce the model, in the third section we state known theorems on the asymptotics

of the resonances. In section 4 we develop the method of pseudo orbit expansion for the

resonance condition. In the fifth section we state how the effective size can be found for

an equilateral graph (graph with the same lengths of the internal edges). In section 6 we

develop a method which allows us to delete some of the edges of a non-Weyl graph. In

section 7 we state the main theorems on the bounds on the effective size and position of

the resonances for equilateral graphs. Section 8 illustrates found results and developed

method in two examples.

2. Preliminaries

First, we describe the model and introduce the main notions. We consider a metric

graph Γ consisting of N finite edges of length `j and M infinite edges, which can be

parametrized as halflines (0,∞). On this graph we define a second order differential

operator H acting as −d2/dx2 with the domain consisting of functions with edge

components in Sobolev space W 2,2(ej) which satisfy the coupling conditions at the

vertices

(Uj − I)Ψj + i(Uj + I)Ψ′j = 0 , (1)

where Uj is dj × dj unitary matrix (dj is the degree of the given vertex), I is a unit

matrix, Ψj is the vector of limits of functional values from various edges to the given

vertex and, similarly, Ψ′j is the vector of outgoing derivatives. This coupling condition

was independently found by Kostrykin and Schrader [KS00] and Harmer [Har00].

As it was shown in [EL10, Kuc08], one can describe the set of equations (1) by

only one equation using a big (2N + M) × (2N + M) unitary matrix U , which is in

certain basis block diagonal and consists of blocks Uj. This matrix encodes not only the

coupling but also the topology of the whole graph.

(U − I)Ψ + i(U + I)Ψ′ = 0 . (2)

Here, I is (2N +M)× (2N +M) unit matrix and the vectors Ψ and Ψ′ consist of entries

of Ψj and Ψ′j, respectively. This coupling condition corresponds to a graph where all

the vertices are joint into one vertex.

One can also describe the coupling on the compact part of the graph using energy-

dependent 2N × 2N coupling matrix Ũ(k). It can be straightforwardly proven [EL10]

by a standard method (Schur, etc.) that the effective coupling matrix is

Ũ(k) = U1 − (1− k)U2[(1− k)U4 − (1 + k)I]−1U3 , (3)
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where the matrices U1, . . . , U4 are blocks of the matrix U =

(
U1 U2

U3 U4

)
; U1 corresponds

to the coupling between internal edges, U4 between external edges and U2 and U3

correspond to the mixed coupling. The coupling condition has a similar form to (2)

with U replaced by Ũ(k) and I meaning now 2N × 2N unit matrix.

3. Asymptotics of the number of resonances

We are interested in the asymptotical behaviour of the number of resolvent resonances

of the system. By a resolvent resonance we mean the pole of meromorphic continuation

of the the resolvent (H − λid)−1 into the second sheet. The resolvent resonances can

be obtained by the method of complex scaling (more on that in [EL07]). We will use a

simpler but equivalent definition.

Definition 3.1. We call λ = k2 a resolvent resonance if there exists a generalized

eigenfunction f ∈ L2
loc(Γ), f 6≡ 0 satisfying −f ′′(x) = k2f(x) and the coupling conditions

(1), which on all external edges behaves as cj eikx.

This definition is equivalent to the previously mentioned one because these

generalized eigenfunctions (which, of course, are not square integrable), become after

complex scaling square integrable. It was proven in [EL07] that the set of resolvent

resonances is equal to the union of the set of scattering resonances and the eigenvalues

with the eigenfunctions supported only on the internal part of the graph.

We define a counting function N(R), which counts the number of resolvent

resonances including their multiplicities which are contained in the circle of radius R in

the k-plane. One should note that by this method we find twice more resonances than

in the energy plane. This is clear for the case of a compact graph, because the k and

−k correspond to the same eigenvalue.

Most of the quantum graphs have the asymptotics of the resolvent resonances

obeying Weyl law. However, there exist such graphs for which the constant by the

leading term of the asymptotics is smaller than expected; we call these graphs non-

Weyl. The problem was studied for graphs with standard coupling (in the literature

also called Kirchhoff, free or Neumann coupling) in [DP11] and for graphs with general

coupling in [DEL10]. We state main results of these papers.

Theorem 3.2. (Davies and Pushnitski)

Graphs with standard coupling (functional values are continuous in the vertex and the

sum of the outgoing derivatives is zero) with the sum of the lengths of the internal edges

equal to vol Γ have the following asymptotics of resonances

N(R) =
2

π
WR +O(1) , as R→∞ ,

where 0 ≤ W ≤ vol Γ. One has W < vol Γ iff there exist at least one balanced vertex,

i.e. the vertex which connects the same number of internal and external edges.
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Theorem 3.3. (Davies, Exner and Lipovský)

The graph with general coupling (2) with the sum of the internal edges equal to vol Γ has

the asymptotics

N(R) =
2

π
WR +O(1) , as R→∞ ,

where 0 ≤ W ≤ vol Γ. One has W < vol Γ (the graph is non-Weyl) iff the effective

coupling matrix Ũ(k) has the eigenvalue either 1+k
1−k or 1−k

1+k
.

While finding whether the graph is Weyl or non-Weyl is quite easy (it depends only

on the vertex properties of the graph), finding the coefficient W (the effective size of the

graph) is more complicated, because it depends on the properties of the whole graph.

It is illustrated e.g. in the theorem 7.3 in [DEL10].

4. Pseudo orbit expansion for the resonance condition

There is a theory developed how to find the spectrum of a compact quantum graph by a

pseudo orbit expansion (see e.g. [BHJ12, KS99]). In this section we adjust this method

to finding the resonance condition. The idea is to find the effective vertex-scattering

matrix which acts only on the compact part of the graph. The vertex-scattering matrix

maps the vector of amplitudes of the incoming waves to the vertex into the vector of

amplitudes of the outgoing waves. We will show that in the case of standard coupling

this matrix is not energy dependent and has a nice form.

Definition 4.1. For a compact quantum graph we can express the solution of the

Schrödinger equation on each edge as a combination of two waves fj(x) = αin
ej

e−ikx +

αout
ej

eikx. Let us consider a vertex of the graph and let all the edges emanating from

this vertex be parametrized by (0, `j), where x = 0 corresponds to this vertex. By a

vertex-scattering matrix we mean a matrix σ(v) for which holds ~αout
v = σ(v)~αin

v , where

~αin
v and ~αout

v are the vectors of coefficients of the incoming and outgoing waves on the

edges which emanate from vertex v, respectively. For a non-compact quantum graph

the effective coupling matrix σ̃(v) is defined similarly; its size is given by the number of

finite edges which emanate from vertex v and maps the vector of coefficients of incoming

waves on these finite edges on the vector of coefficients of outgoing waves.

For the next theorem we drop the superscript or subscript v denoting the vertex in

coupling and vertex-scattering matrices.

Theorem 4.2. (general form of the effective vertex-scattering matrix)

Let us consider a non-compact graph Γ with the coupling at the vertex v given by (1)

and the matrix U . Let the vertex v connect n internal edges and m external edges. Let

the matrix I be (n+m)× (n+m) unit matrix and by In we denote the n×n unit matrix

and by Im the m ×m unit matrix. Then the effective vertex-scattering matrix is given

by σ̃(k) = −[(1− k)Ũ(k)− (1 + k)In]−1[(1 + k)Ũ(k)− (1− k)In]. The inverse relation

is Ũ(k) = [(1 + k)σ̃(k) + (1− k)In][(1− k)σ̃(k) + (1 + k)In]−1.
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Proof. Let the solution on the internal edges emanating from the vertex v be fj(x) =

αin
j e−ikx + αout

j eikx and on the external edges gj(x) = βje
ikx. Vector of functional

values therefore is Ψ =

(
~αin + ~αout

~β

)
and the vector of outgoing derivatives is

Ψ′ = ik

(
−~αin + ~αout

~β

)
. The coupling condition (1) is

(U − I)

(
~αin + ~αout

~β

)
+ iik(U + I)

(
−~αin + ~αout

~β

)
= 0 .

Hence we have the set of equations

[U1 − In − k(U1 + In)]~αout + [(U1 − In) + k(U1 + In)]~αin + (1− k)U2
~β = 0 ,

(1− k)U3~α
out + (1 + k)U3~α

in + [(U4 − Im)− k(U4 + Im)]~β = 0 .

Expressing ~β from the second equation and substituting into the first one one has

{(1− k)U1 − (1 + k)In − (1− k)U2[(1− k)U4 − (1 + k)Im]−1(1− k)U3}~αout +

+{(1 + k)U1 − (1− k)In − (1− k)U2[(1− k)U4 − (1 + k)Im](1 + k)U3}~αin = 0 ,

from which using (3) the claim follows. Expressing the inverse relation is

straightforward.

Using the previous theorem one can straightforwardly compute the effective vertex-

scattering matrix for standard condition.

Corollary 4.3. Let v be the vertex connecting n internal and m external edges and let

there be a standard coupling condition in v (i.e. U = 2
n+m

Jn+m−In+m, where Jn denotes

n× n matrix with all entries equal to one). Then the effective vertex-scattering matrix

is σ̃(k) = 2
n+m

Jn − In, in particular, for a balanced vertex we have σ̃(k) = 1
n
Jn − In.

Proof. There are two ways how to prove this corollary. First is to compute the effective

vertex-scattering matrix from the definition in a similar way to the proof of theorem 4.2.

Second, a little bit longer, but straightforward, uses the theorem. Using the formula

(aJn + bIn)−1 = 1
b

(
− a
an+b

Jn + In
)

we compute the effective coupling matrix and obtain

Ũ(k) = 2
km+n

Jn − In. Substituting it into the formula in theorem 4.2 and using the

above expression of the inverse matrix and the fact that Jn · Jn = nJn one obtains the

result.

Having found the effective vertex-scattering matrix one can proceed in the lines

of the method shown in [BHJ12]. We replace the compact part of the graph Γ by an

oriented graph Γ2, each finite edge ej of Γ is replaced by two oriented edges bj, b̂j of the

same length, each of them with different orientation. On these edges we use the ansatz

fbj(x) = αin
bj

e−ikx + αout
bj

eikx ,

fb̂j(x) = αin
b̂j

e−ikx + αout
b̂j

eikx .
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Since we have relation fbj(x) = fb̂j(`j −x) (functional values in both directions must be

the same), we obtain the following relations between coefficients

αin
bj

= eik`jαout
b̂j
, αin

b̂j
= eik`jαout

bj
. (4)

Now we define the matrix Σ̃(k) (which is in general energy-dependent) as a block-

diagonalizable matrix written in the basis corresponding to

~α = (αin
b1
, . . . , αin

bN
, αin

b̂1
, . . . , αin

b̂N
)T

which is block diagonal with blocks σ̃v(k) if transformed to the basis

(αin
bv11

, . . . , αin
bv1d1

, αin
bv21

, . . . , αin
bv2d2

, . . .)T ,

where bv1j is the j-th edge emanating from the vertex v1.

Furthermore, we define 2N × 2N matrices Q =

(
0 IN
IN 0

)
, scattering matrix

S(k) = QΣ̃(k) and

L = diag (`1, . . . , `N , `1, . . . , `N) .

Using these matrices we can state the following theorem.

Theorem 4.4. The resonance condition is given by

det (eikLQΣ̃(k)− I2N) = 0 .

Proof. If we define as ~αin
b = (αin

b1
, . . . αin

bN
)T and similarly for the outgoing amplitudes

and bonds in the opposite direction b̂j, we can subsequently obtain(
~αin
b

~αin
b̂

)
= eikL

(
~αout
b̂

~αout
b

)
= eikLQ

(
~αout
b

~αout
b̂

)
= eikLQΣ̃(k)

(
~αin
b

~αin
b̂

)
.

We have first used relations (4), then definitions of matrices Q and Σ̃. Since the vectors

on the lhs and rhs are the same, the equation of the solvability of the system gives the

resonance condition.

Now we define orbits on the graph, we use the same notation as in [BHJ12].

Definition 4.5. A periodic orbit γ on the graph Γ2 is a closed path on the graph Γ2

which begins and ends in the same vertex. A pseudo orbit is a collection of periodic

orbits (γ̃ = {γ1, γ2, . . . , γm}). An irreducible pseudo orbit γ̄ is a pseudo orbit, which

contains no directed bond more than once. The metric length of a periodic orbit is

defined as `γ =
∑
bj∈γ `bj ; the length of a pseudo orbit is the sum of the lengths of all

periodic orbits from which it is composed. The product of scattering amplitudes along

the periodic orbit γ = (b1, b2, . . . bn) we denote as Aγ = Sb2b1Sb3b2 . . . Sb1bn; for a pseudo

orbit we define Aγ̄ =
∏
γj∈γ̄ Aγj . By mγ̃ we denote the number of periodic orbits in the

pseudo orbit γ̃ and by Bγ̃ its total topological length (number of bonds in the pseudo

orbit).
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We give without a proof (which can be found in [BHJ12]) a theorem on finding the

resonance condition using pseudo orbits.

Theorem 4.6. The resonance condition is given by∑
γ̄

(−1)mγ̄Aγ̄(k) eik`γ̄ = 0 .

5. Effective size of an equilateral graph

As we stated in section 3, the effective size of a graph is defined as π
2
-multiple of the

constant by the leading term of the asymptotics. In this section we will find the effective

size of an equilateral graph (graph with the same lengths of the internal edges) from

matrices Q and Σ̃.

First, we will show a general criterion whether the graph is non-Weyl using the

notions of theorem 4.4.

Theorem 5.1. The graph is non-Weyl iff det Σ̃(k) = 0. In other words, the graph is

non-Weyl iff there exists a vertex for which det σ̃v(k) = 0.

Proof. The first term of the determinant in the theorem 4.4 is det [QΣ̃(k)] e2ik
∑N

j=1
`j

and the last term is 1. The theorem 3.1 in [DEL10] shows that the number of zeros

of this determinant in the circle of radius R is asymptotically equal to 2
π
vol Γ iff the

constant by the first term is nonzero. Since multiplying by Q means only rearranging

the rows, detQΣ̃(k) = 0 iff det Σ̃(k) = 0. Since Σ̃(k) consists in certain basis of blocks

σ̃v, the second part of the theorem follows.

From this theorem and corollary 4.3 the theorem 1.2 from [DP11] follows, which

states that a graph with standard coupling is non-Weyl iff there is a vertex with the

same number of finite and infinite edges.

Now we will state a theorem which gives the effective size of an equilateral graph.

Theorem 5.2. Let us assume an equilateral graph (graph which has the same lengths

of the internal edges `). Then the effective size of this graph is `
2
nnonzero, where nnonzero

is the number of nonzero eigenvalues of the matrix QΣ̃(k).

Proof. We will use the theorem 4.4 again. First, we notice that the matrix QΣ̃(k) can be

in this theorem replaced by its Jordan form D(k) = V QΣ̃(k)V −1 with V unitary. The

matrix L is for an equilateral graph a multiple of unit matrix and therefore V commutes

with eikL. Unitary transformation does not change the determinant of a matrix, hence

we have the resonance condition det (eik`D(k) − I2N) = 0. Since the matrix under the

determinant is upper triangular, the determinant is equal to multiplication of its diagonal

elements. The first nozero term of the determinant, which contains exponential to the

highest power, is eik`nnonzero . The last term is 1. The claim follows from the theorem 3.1

in [DEL10].
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Clearly, if there is nbal balanced vertices with standard coupling, then there is

at least nbal zeros in the eigenvalues of the matrix QΣ̃ and hence the effective size is

bounded W ≤ vol Γ − `
2
nbal. The following corollary of the previous theorem gives a

criterion when this bound can be improved.

Corollary 5.3. Let Γ be an equilateral graph with standard coupling and with nbal

balanced vertices. Then the effective size W < vol Γ − `
2
nbal iff rank (QΣ̃QΣ̃) <

rank(QΣ̃) = 2N − nbal.

Proof. For the vertex of degree d the rank of σ̃v is either d− 1 for a balanced vertex or

d otherwise. Hence rank(QΣ̃) = rank(Σ̃) = 2N −nbal. The effective size is smaller than

vol Γ − `
2
nbal iff there is at least one 1 just above the diagonal in the block with zeros

on the diagonal in the Jordan form of QΣ̃. Each Jordan block consisting of n zeros on

the diagonal and n − 1 ones above the diagonal has rank n − 1; its square has rank

n − 2. The blocks with eigenvalues different than zero have (as well as their squares)

rank maximal. Hence rank of QΣ̃QΣ̃ is smaller than the rank of QΣ̃.

6. Deleting edges of the oriented graph

In this section we will develop a method how to “delete” some edges of the graph Γ2

for a non-Weyl graph. We will restrain to equilateral graphs with standard coupling.

For each balanced vertex we delete one directed edge which ends in this vertex and

replace it by one or several “ghost edges”. These edges allow for the pseudo orbits

to hop from a vertex to a directed edge which is not connected with the vertex. The

“ghost edges” do not contribute to the resonance condition with the coefficient eik`,

they only change the product of scattering amplitudes. The idea under this deleting is

a unitary transformation of the matrix QΣ̃, after which one of its rows consists of all

zeros. We will use this method in the following section to prove the main theorems. We

will explain this method in the following theorem; for better understanding the example

in section 8.1 might be helpful.

Theorem 6.1. Let us assume an equilateral graph Γ (all internal edges of length `)

with standard coupling. Let us assume that there is no edge which starts and ends

in one vertex and that no two vertices are connected by two or more edges. Let the

vertex v2 be balanced and let the directed bonds b1, . . . , bd end in the vertex v2 (part

of the corresponding directed graph Γ2 is shown in the figure 1). Then the following

construction does not change the resonance condition. We delete the directed edge

b1, which starts at the vertex v1 and ends at v2. There are introduced new directed

“ghost edges” b′1, b
′′
1, . . . , b

(d−1) which start in the vertex v1 and are connected to the edges

b2, b3, . . . bd, respectively (see figure 2). One can use pseudo orbits to obtain a resonance

condition from the new graph similarly to the theorem 4.6. If the “ghost edge” b′1 is

contained in the irreducible pseudo orbit γ̄, the length of this “ghost edge” does not

contribute to `γ̄. Let e.g. the “ghost edge” b′1 be included in γ̄. Then the scattering

amplitude from a bond b ending in v1 and the bond b2 is the scattering amplitude in the
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b1

b̂1

b2b̂2

b3

b̂3

bd b̂d

v1
v2

Figure 1. Part of the

graph Γ2. To vertex v1
and undenoted vertices which

neighbour v2 other bonds can

be attached.

b̂1

b2b̂2

b3

b̂3

bd b̂d

v1 v2

b′1

b′′1

b
(d−1)
1

Figure 2. Part of the graph

Γ2 after deleting the bond

b1 and introducing “ghost

edges”.

graph Γ2 between b and b1 taken with the opposite sign. In the irreducible pseudo orbit

each “ghost edge” can be used only once. The above procedure can be repeated; for each

balanced vertex one can delete one directed edge which ends in this vertex and replace it

by the “ghost edges”.

Proof. Unitary transformation of the matrix QΣ̃ does not change the determinant in

theorem 4.4, since for an equilateral graph eikL is replaced by eik`I2N and

det (eik`V1QΣ̃V −1
1 − I2N) = det [V1(eik`QΣ̃− I2N)V −1

1 ] = det (eik`QΣ̃− I2N) .

Let v2 be balanced vertex, we want to delete edge b1 and let the other edges ending in

v2 be b2, b3, . . . , bd. We will choose as V1 the 2N×2N matrix with 1 on the diagonal, the

entries which are at once in the row corresponding to b1 and in the columns corresponding

b2, b3, . . . bd are also 1, the other entries are zero. One can easily show that V −1
1 is equal

to V1, only the nondiagonal entries have negative sign.

The matrix σ̃v2 = 1
d
Jd − Id has linearly dependent rows, hence if one multiplies

it from the left by a matrix with ones on the diagonal and ones in one of its rows,

otherwise zeros, one obtains a matrix which has one row with all zeros and the other

rows the same as σ̃v2 . The matrix QΣ̃ has entries of σ̃v2 in the rows corresponding to

bonds ending at v2 and columns corresponding to bonds starting from v2. By the same

reasoning as for σ̃v2 the row of V1QΣ̃ corresponding to b1 has all entries equal to zero

and other rows are unchanged.

Now it remains to show how multiplying from the right by V −1
1 changes the matrix.

Since nondiagonal entries are only in the columns of V −1
1 corresponding to bonds

b2, b3, . . . bd, multiplying by V −1
1 changes only these columns. Since nondiagonal entries
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are only in the row corresponding to b1, the change can happen only in rows in which

there is nontrivial entry in the column corresponding to b1. These rows correspond to

bonds which end in the vertex v1. We have to multiply these rows by columns of V −1
1

which have 1 in the bj-th position, j = 2, 3, . . . , d and -1 in the b1-th position. Since no

two vertices are connected by two or more edges, the only bond starting at v1 and ending

at v2 is b1 and the entries of V1QΣ̃ in the row corresponding to the edges ending at v1

and in the column corresponding to the edges b2, b3, . . . bd are zero (the edges in the row

cannot be followed in an orbit by edges in the column). Hence 1 in the above column

of V −1
1 is multiplied by 0 and -1 is multiplied by the scattering amplitude between the

bonds ending in v1 and b1. Therefore, the only change is that there is this negatively

taken scattering amplitude in the rows corresponding to the bonds which end in v1 and

in the column corresponding to bonds b2, b3, . . . , bd. These entries are represented by

the “ghost edges”.

It is clear now that one has to take the entry of I2N in the row corresponding to

b1 in the determinant in theorem 4.4 with QΣ̃ replaced by V1QΣ̃V −1
1 , therefore this

edge effectively does not exist. The “ghost edge” does not contribute to `γ̄, it only says

which bonds are connected in the pseudo orbit. Similar arguments can be used for other

balanced vertices, for each of them we delete one edge which ends in it. Note that this

method does not delete edges to which a “ghost edge” leads.

7. Main results

In this section we give two main theorems on bounds on the effective size for equilateral

graphs with standard coupling and a theorem which gives the positions of the resonances.

Theorem 7.1. Let us assume an equilateral graph with N internal edges of lengths

`, with standard coupling, nbal balanced vertices and nnonneig balanced vertices which

do not neighbour any other balanced vertex. Then the effective size is bounded by

W ≤ N`− `
2
nbal − `

2
nnonneig.

Proof. Clearly, for each balanced vertex, we can delete one directed edge of the graph

Γ2, the size of the graph is reduced by `
2
nbal. In the balanced vertex of the degree d which

do not neighbour any other balanced vertex we have d− 1 incoming directed bonds and

d outgoing directed bonds. No outgoing bond is deleted and no “ghost edge” ends in the

outgoing edge, because there is no balanced vertex which neighbours the given vertex.

Hence we cannot use one of the outgoing directed edges in the irreducible pseudo orbit

(there is no way how to get to this vertex for d-th time). The longest irreducible pseudo

orbit does not include nnonneig bonds and the effective size of the graph must be reduced

by `
2
nnonneig.

Theorem 7.2. Let us assume an equilateral graph (N internal edges of the lengths `)

with standard coupling. Let there be a square of balanced vertices v1, v2, v3 and v4 without

diagonals, i.e. v1 neighbours v2, v2 neighbours v3, v3 neighbours v4, v4 neighbours v1, v1
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Γ′
2

v1 v2

v3v4

1

1̂

22̂

3

3̂

4 4̂

Figure 3. Figure to theo-

rem 7.2. The bonds between

Γ′
2 and vertices v1, . . . , v4 rep-

resent possible directed edges

between this subgraph and

vertices in both directions.

Γ′
2

v1 v2

v3v4

1

2

3

4

Figure 4. Figure to the-

orem 7.2. The bonds and

“ghost edges” between Γ′
2 and

vertices v1, . . . , v4 represent

possible directed edges be-

tween this subgraph and ver-

tices in both directions and

“ghost edges” from the ver-

tices v1, . . . , v4 to the sub-

graph Γ′
2.

Γ′
2

1
2
3

4

Figure 5. Figure to theorem 7.2. The effective graph with “ghost edges” taken into

account.

does not neighbour v3 and v2 does not neighbour v4. Then the effective size is bounded

by W ≤ (N − 3)`.

Proof. Let us denote the bond from v1 to v2 by 1, the bond from v2 to v3 by 2, the bond
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from v3 to v4 by 3 and the bond from v4 to v1 by 4, the bonds in the opposite directions

by 1̂, 2̂, 3̂ and 4̂ (see figure 3). Let Γ′2 be the rest of the graph Γ2; it can be connected

with the square by bonds in both directions, we denote them in figure 3 by edges with

arrows in both directions. Now we delete bonds 1̂, 2̂, 3̂ and 4̂ (see figure 4), there arise

“ghost edges” in the square (explicitly shown) and there may arise “ghost edges” from

vertices of the square to edges of the rest of the graph (represented by dashed edges

between the square and Γ′2). Since the pseudo orbit can continue from the bond 1 to

the bond 4 (with scattering amplitude equal to the scattering amplitude from 1 to 1̂

with the opposite sign), from bond 2 to 1, etc., one can effectively represent the oriented

graph by figure 5.

It is clear that the effective size has been reduced by 2`, because four edges have been

deleted. The highest term of the resonance condition corresponds to the contribution

of irreducible pseudo orbits on all remaining “non-ghost” bonds (the pseudo orbits may

or may not use the “ghost edges”). The contribution of the pseudo orbits (1234) and

(12)(34) cancels out, because both pseudo orbits differ only in the number of orbits,

hence there is a factor of −1. Similar argument holds also for the pair of pseudo orbits

(1432) and (14)(32) and all irreducible pseudo orbits which include these pseudo orbits.

Now we show why also the second highest term is zero. It includes contribution of

all bond but one. If the non-included bond is not 1, 2, 3 or 4, the contributions cancel

due to the previous argument. If e.g. the bond 4 is not included, it would mean that

one must go from one of the lower vertices in the figure 5 to the other through Γ′2. This

is not possible, because the irreducible pseudo orbit has to include all the bonds but 4,

none of the bonds in the part Γ′2 is deleted and there is no “ghost edge” ending in the

bond 1, 2, 3 or 4. If there exists a path through Γ′2, from one vertex to another, then

the path in the opposite direction cannot be covered by the irreducible pseudo orbit.

Therefore, at least 6 directed edges of the former graph Γ2 are not used and the

effective size is reduced by 3`.

Finally, we state what the positions of the resolvent resonances are.

Theorem 7.3. Let us assume an equilateral graph (lengths `) with standard coupling.

Let the eigenvalues of QΣ̃ be cj = rje
iϕj . Then the resolvent resonances are λ = k2 with

k = 1
`
(−ϕj + 2nπ + i ln rj), n ∈ Z. Moreover, |cj| ≤ 1 and for a graph with no edge

starting and ending at one vertex also
∑2N
j=1 cj = 0.

Proof. The resonance condition is

2N∏
j=1

(eik`cj − 1) = 0 ,

hence we have for k = kR + ikI

rje
−kI`eikR`eiϕj = 1 ,

from which the claim follows. For rj > 1 we would have positive imaginary part of k

which would contradict the fact that eigenvalues of the selfadjoint Hamiltonian are real
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(the corresponding generalized eigenfunction would be square integrable). If the graph

does not have any edge starting and ending in one vertex, then there are zeros on the

diagonal of QΣ̃, hence its trace (the sum of its eigenvalues) is zero.

8. Examples

In this section we show two particular examples, which illustrate the general behaviour.

In the first example the method of deleting the directed bonds is explained. The second

example shows that the symmetry of the graph is not sufficient to obtain the effective

size smaller than it is expected from the bound in theorem 7.1.

8.1. Square with the diagonal and all vertices balanced

We assume equilateral graph with four internal edges in the square and fifth edge as

diagonal of this square. All four vertices are balanced, i.e. to two of them two halflines

are attached and to the other two vertices three halflines are attached. There is standard

coupling in all vertices. The oriented graph Γ2 is shown in figure 6.

1

1̂

22̂

3

3̂

4 4̂

5

5̂

Figure 6. The graph Γ2 for

the graph in example 8.1.

1

22̂

3

3̂

4 4̂

5

5̂
1̂′

Figure 7. The graph Γ2 after

deleting the bond 1̂.

Let us denote the vertex from which the edge 1 starts by v1 and the vertex, where

1 ends by v2. Then the effective vertex-scattering matrices are

σ̃v1 =
1

2

(
−1 1

1 −1

)
, σ̃v2 =

1

3


−2 1 1

1 −2 1

1 1 −2

 ,
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similarly for the other two vertices. Hence the matrix QΣ̃ is equal to

1 2 3 4 5 1̂ 2̂ 3̂ 4̂ 5̂

1 0 1/3 0 0 0 −2/3 0 0 0 1/3

2 0 0 1/2 0 0 0 −1/2 0 0 0

3 0 0 0 1/3 1/3 0 0 −2/3 0 0

4 1/2 0 0 0 0 0 0 0 −1/2 0

5 0 1/3 0 0 0 1/3 0 0 0 −2/3

1̂ −1/2 0 0 0 0 0 0 0 1/2 0

2̂ 0 −2/3 0 0 0 1/3 0 0 0 1/3

3̂ 0 0 −1/2 0 0 0 1/2 0 0 0

4̂ 0 0 0 −2/3 1/3 0 0 1/3 0 0

5̂ 0 0 0 1/3 −2/3 0 0 1/3 0 0

.

The edges, to which the rows and columns correspond, are denoted on the left and on

the top of the matrix.

Now we delete the bond 1̂ (figure 7). Deleting this edge is equivalent to the

unitary transformation V1QΣ̃V −1
1 , where V1 has 1 on the diagonal, 1 in the sixth row

(corresponding to the bond 1̂) and fourth column (corresponding to the bond 4), other

entries of this matrix are zero. Its inverse has 1 on the diagonal and -1 in the sixth row

and fourth column. We obtain the matrix

1 2 3 4 5 1̂ 2̂ 3̂ 4̂ 5̂

1 0 1/3 0 2/3 0 −2/3 0 0 0 1/3

2 0 0 1/2 0 0 0 −1/2 0 0 0

3 0 0 0 1/3 1/3 0 0 −2/3 0 0

4 1/2 0 0 0 0 0 0 0 −1/2 0

5 0 1/3 0 −1/3 0 1/3 0 0 0 −2/3

1̂ 0 0 0 0 0 0 0 0 0 0

2̂ 0 −2/3 0 −1/3 0 1/3 0 0 0 1/3

3̂ 0 0 −1/2 0 0 0 1/2 0 0 0

4̂ 0 0 0 −2/3 1/3 0 0 1/3 0 0

5̂ 0 0 0 1/3 −2/3 0 0 1/3 0 0

.

In this matrix the sixth column consist of all zeros and there are three other new entries

in the fourth columns which are printed in bold. Since the new entries are in the fourth

column, there must be a “ghost edge” 1̂′ from the vertex v2 pointing to the bond 4. We

can use it in pseudo orbits containing one of the bonds 1, 5, 2̂ continuing then to the

bond 4 with the scattering amplitudes in bold above.

Now we delete the bond 2̂ (figure 8). Since two other bonds end in the vertex v2

(bonds 1 and 5), there will be two “ghost edges”. We will use the unitary transformation

V2V1QΣ̃V −1
1 V −1

2 . V2 has 1 on the diagonal and 1 in the seventh row (corresponding to

the edge 2̂) and columns 1 and 5. Its inverse has nondiagonal terms with opposite signs.
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1

2

3

3̂

4 4̂

5

5̂
1̂′

2̂′

2̂′′

Figure 8. The graph Γ2 after

deleting the bonds 1̂ and 2̂.

1

2

3

4
5

5̂
1̂′

2̂′

2̂′′

3̂′

4̂′

4̂′′

Figure 9. The graph Γ2

after deleting the bonds 1̂, 2̂,

3̂ and 4̂.

After the transformation we obtain

1 2 3 4 5 1̂ 2̂ 3̂ 4̂ 5̂

1 0 1/3 0 2/3 0 −2/3 0 0 0 1/3

2 1/2 0 1/2 0 1/2 0 −1/2 0 0 0

3 0 0 0 1/3 1/3 0 0 −2/3 0 0

4 1/2 0 0 0 0 0 0 0 −1/2 0

5 0 1/3 0 −1/3 0 1/3 0 0 0 −2/3

1̂ 0 0 0 0 0 0 0 0 0 0

2̂ 0 0 0 0 0 0 0 0 0 0

3̂ −1/2 0 −1/2 0 −1/2 0 1/2 0 0 0

4̂ 0 0 0 −2/3 1/3 0 0 1/3 0 0

5̂ 0 0 0 1/3 −2/3 0 0 1/3 0 0

.

The seventh row (corresponding to 2̂) has all entries equal to zero; other new entries are

printed in bold. These entries correspond to the new “ghost edges” 2̂′ and 2̂′′. Similarly,
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we delete edges 3̂ and 4̂ (figure 9); the matrix QΣ̃ after these transformations is

1 2 3 4 5 1̂ 2̂ 3̂ 4̂ 5̂

1 0 1/3 0 2/3 0 −2/3 0 0 0 1/3

2 1/2 0 1/2 0 1/2 0 −1/2 0 0 0

3 0 2/3 0 1/3 1/3 0 0 −2/3 0 0

4 1/2 0 1/2 0 0 0 0 0 −1/2 1/2

5 0 1/3 0 −1/3 0 1/3 0 0 0 −2/3

1̂ 0 0 0 0 0 0 0 0 0 0

2̂ 0 0 0 0 0 0 0 0 0 0

3̂ 0 0 0 0 0 0 0 0 0 0

4̂ 0 0 0 0 0 0 0 0 0 0

5̂ 0 −1/3 0 1/3 −2/3 0 0 1/3 0 0

.

The eigenvalues of the matrix QΣ̃ are −2/3, −1/3, −1, 1 with multiplicity 2, 0

with multiplicity 5. There is one Jordan block

(
0 1

0 0

)
in the Jordan form of QΣ̃.

The resonance condition can be obtained from the eigenvalues by the equation at the

beginning of the proof of the theorem 7.3

1− 16

9
e2ik` − 2

9
e3ik` +

7

9
e4ik` +

2

9
e5ik` = 0 .

By the theorem 7.3 we obtain that the positions of the resonances are such λ = k2 with

k = 1
`
[(2n + 1)π − i ln 3], k = 1

`
[(2n + 1)π − i ln 3

2
], k = 1

`
(2n + 1)π and k = 1

`
2nπ with

multiplicity 2, n ∈ Z.

8.2. Fully connected graph on four vertices with all vertices balanced

1

1̂

22̂

3

3̂

4 4̂

5

5̂

6

6̂

Figure 10. Graph Γ2 for fully connected graph on four vertices.
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In this subsection we assume a graph on four vertices, every two vertices are

connected by one edge of length ` and there are three halflines attached at each vertex,

hence each vertex is balanced. The directed graph Γ2 is shown in figure 10. For each

vertex we have the effective vertex-scattering matrix

σ̃v =
1

3


−2 1 1

1 −2 1

1 1 −2

 .

The matrix QΣ̃ is

1 2 3 4 5 6 1̂ 2̂ 3̂ 4̂ 5̂ 6̂

1 0 1/3 0 0 0 0 −2/3 0 0 0 1/3 0

2 0 0 1/3 0 0 0 0 −2/3 0 0 0 1/3

3 0 0 0 1/3 1/3 0 0 0 −2/3 0 0 0

4 1/3 0 0 0 0 1/3 0 0 0 −2/3 0 0

5 0 1/3 0 0 0 0 1/3 0 0 0 −2/3 0

6 0 0 1/3 0 0 0 0 1/3 0 0 0 −2/3

1̂ −2/3 0 0 0 0 1/3 0 0 0 1/3 0 0

2̂ 0 −2/3 0 0 0 0 1/3 0 0 0 1/3 0

3̂ 0 0 −2/3 0 0 0 0 1/3 0 0 0 1/3

4̂ 0 0 0 −2/3 1/3 0 0 0 1/3 0 0 0

5̂ 0 0 0 1/3 −2/3 0 0 0 1/3 0 0 0

6̂ 1/3 0 0 0 0 −2/3 0 0 0 1/3 0 0

.

Its eigenvalues are −1 with multiplicity 2, 1 with multiplicity 3, −1/3 with multiplicity

3 and 0 with multiplicity 4. There is no Jordan block. The resonance condition is

1− 8

3
e2ik` − 8

27
e3ik` +

62

27
e4ik` +

16

27
e5ik` − 16

27
e6ik` − 8

27
e7ik` − 1

27
e8ik` = 0 .

Similarly to the previous example we can find the positions of the resolvent resonances

λ = k2 with k = 1
`
(2n + 1)π with multiplicity 2, k = 1

`
2nπ with multiplicity 3 and

k = 1
`
[(2n+ 1)π − i ln 3] with multiplicity 3, n ∈ Z.

This example shows that the symmetry of the graph does not assure that it will

have the effective size smaller than the bound in theorem 7.1. This graph has four 0

as eigenvalues of QΣ̃, hence the effective size is 4`, as we expect from four balanced

vertices. Although this graph is very symmetric, we do not have smaller effective size

in contrary to the example in theorem 7.3 in [DEL10].
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