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Abstract.
We study the nonassociative ring of integral octaves (or Cayley numbers or octonions) discovered
independently by Dickson and Coxeter. We prove that every one-sided ideal is in fact two-sided,

principal, and generated by a rational integer.

1 Introduction

The nonassociative ring X of integral octaves is a discrete subring of the nonassociative field O
of octaves—it is the natural analogue of the the rational integers in Z. Dickson introduced X in
[4]; one can use X to construct the finite simple groups now called Ga(p) for p a prime number.
Much later, Coxeter [3] rediscovered the ring and obtained a number of new results concerning it.
The purpose of this note is to obtain a complete description of the ideals in X: every one-sided
ideal is actually two-sided and generated by a rational integer. This substantially improves a result
of Mahler [5], who proved that any one-sided ideal is generated by a rational integer multiple of
an element of one of three possible norms. Our arguments rely on geometric properties of the Eg
lattice and its automorphism group, rather than the sort of explicit computation that Mahler used.

Our definitions of O and X are those of [1, p. 85]. The nonassociative field @ of octaves is

an 8-dimensional algebra over the real numbers R, with basis e, = 1, eg, ..., es. Multiplication is
defined by the relations that for each n = 0,...,6, €2 = —1 and the span of e, €,, €,11 and €,13
is a copy of the the (associative) field of quaternions, with e,e,11e,+3 = —1. Here the subscripts

should be read modulo 7. If x = xceso + oo + - - - + g6 With each x,, € R then the conjugate of
TS T = Too€oo — To€p — -+ - — Tgeg. The absolute value |z| of = is v/zZ, which is a nonnegative real
number; |z| = 0 just if z = 0. The identity |zy| = |z||y| (for any z,y € Q) is important for the

proof of theorem 1.1. The real part of x is x~o; if this vanishes then we say that x is imaginary.
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The integral octaves K are the discrete subring of O consisting of those z = ) z,e,, satisfying

Ty, € %Z for all n = 00,0,...,6 and that the set of n for which z,, ¢ Z is one of

{0124}, {0235}, {0346}, {0156},

{00013}, {00026}, {00045}, {c00123456},

or the complement of one of these. Omne may check [3] that X is closed under addition and
multiplication. Furthermore, if z € X then |z|? € Z, and under the metric on X induced by the
absolute value function, X is a scaled copy of the Eg lattice [2, ch. 4, §8.1]. In particular, the
minimal distance between elements of X is 1 and the covering radius of X is 1/ V2. (This means
that every element of Q@ lies within 1/v/2 of X and that 1/4/2 is the smallest number for which
this holds.) There are 240 elements of K of absolute value 1, which are the units of X. We denote
the set of these by K*.

The first step in applying the geometry of the Eg lattice to the study of ideals in X is the

following theorem and its corollary.
Theorem 1.1 [3] [5]. The function x — |z|? is a Euclidean norm on X.

Remark: By this we mean that for all z,m € X there are ¢,r € K such that x = gm + r with

|r|? < |m|?, and that there are also ¢/,r" € X such that = mq’ + ' with |r/|> < |m/|?.

Proof: In the notation of the remark, let ¢ € X by such that gm is an element of Xm nearest
z, and let r = = — gm. The right-multiplication map of m increases distances by a factor of |m/|,
so Km has covering radius |m|/v/2. Therefore |r| < |m|/v/2. A similar argument applied to mX

completes the proof. O
Corrollary 1.2. Any left (resp. right) ideal in X has the form Xm (resp. mX) for some m € X.

Proof: This follows from the usual argument that a Euclidean domain is a principal ideal

domain. O

Of course, since X is not associative, if m is a random integral octave then Xm and mX might
fail to be ideals. Our main theorem is essentially the assertion that Xm or mX is an ideal if and

only if m is a product of a rational integer and a unit of X:

Theorem 3.1. Any one-sided ideal J in X is two-sided, principal, and has the form Xn = nX for

some rational integer n.
In order to prove the theorem we need to identify the group generated by the left (or right)
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multiplication maps of units of X. We do this in the next section, and prove the theorem in

section 3.

2. Triality

The best way to understand the group generated by the left (or right) multiplication maps of units
of X is by considering the “isotopy” group of X and its “triality” automorphism. An isotopy is a
triple (A, B, C) of Z-linear maps of X such that for all z,y, z € K, the equation xyz = 1 holds just
if A(x)B(y)C(z) =1 holds. These equations make sense because if either xy-z=1or z-yz =1
then x, y and z all lie in an associative algebra, so that xyz is unambiguously defined and equal

to 1. The product of two isotopies is defined by
(A,B,C)(A",B",C"Y=(Ac A ,BoB',Co(').

By [1, p. 85], the group of isotopies is isomorphic to an extension 22G of the simple group G =
O¢ (2). Furthermore, 22G' is generated by the triples (L,, Ry, B,) for u € X*, where L, (resp.
R,) is the map given by left (resp. right) multiplication by w, and B, is the “bimultiplication”

map r +— utzu!

. The fact that (L, Ry, B,) is an isotopy follows from the Moufang identity:
u(zy)u = (ux)(yu) for all u,z,y € O. For each u € O~{0} the maps L,, R, and B, are
orientation-preserving maps of O, since this is obviously true for u = 1 and O~ {0} is connected.
This implies that there are three different maps 7, m1 and > from 22G to the rotation group of
XK; these carry (A, B,C) to A, B and C, respectively. By the rotation group of X we mean the
full group of orientation-preserving isometries of X; this is the commutator subgroup of the FEg
Weyl group. It is a central extension 2G of O; (2). Finally, the description of 22G in terms of
isotopies makes visible the “triality” automorphism 7 : (A, B,C) — (B,C,A). It is obvious that
T © T = Tm4n, Where the subscripts should be read modulo 3.

We define H to be the subgroup of 22G generated by those triples (L, R, B,) with u € Im X%,
and we set Hy = mo(H), H, = m(H) and H, = mo(H). That is, Hy, H, and H} are respectively
the subgroups of 2G generated by the left, right and bimultiplication maps of elements of Im X*.

Lemma 2.1. H, is a maximal subgroup of 2G and preserves {+1}.
Proof: For u € Im XX it is easy to check that B, negates 1 and u and fixes uNIm Q pointwise.
(This uses the fact that orthogonal imaginary octaves anticommute.) Therefore H}, acts on Im X

as the F; Weyl group, since Im X is a copy of the E7 lattice, being the orthogonal complement of

a minimal vector in a copy of the Fg lattice. Furthermore, an element of H; exchanges 1 and —1
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just if it reverses orientation on Im@. Therefore Hj is isomorphic to the F; Weyl group, and a
computation reveals that [2G|/|Hp| = 120. The maximality follows because by [1, p. 85], G has no
proper subgroups of index < 120. O

Lemma 2.2. The maps L,, (or alternately, the R, or the B,), for u € X*, generate all of 2G.

Proof: By lemma 2.1, Hy is a maximal subgroup of 2G. Since there are u € X* such that
B,(1) ¢ {£1}, the group generated by all the B, is all of 2G. This is just the assertion that
72(22G) = 2@G. By triality, we see that each of 7y(22G) and 71(22G) is also all of 2G. The lemma

follows. O

We remark the the groups 22G and H are respectively Sping (F2), the universal central exten-
sion of O (2), and Piny(Fy), the direct product of Z/2 and the universal central extension of O7(2).
Furthermore, the groups Hy,, Hy and H, are isomorphic to 2 x O7(2), Spin,(F3) and Spin;(Fs). One
may also consider the isotopy group of @ and the obvious analogues of H, Hy, H; and H,. These
five groups (after discarding Euclidean factors) are respectively isomorphic to Sping(R), Pinz(R),
O7(R), Spin,(R) and Spin,;(R). It is remarkable that the exceptional phenomena (triality, etc.)
arising in the Fs-versions of these groups can be “embedded” in the real versions. In particular,
the triality automorphism 7 acts in both cases as the order-three automorphism of the Dynkin

diagram Dy, the Dynkin diagram of an orthogonal group in 8 dimensions.

3. The main theorem
The proof of our main theorem is now quite short. We continue using the notation of section 2.

Theorem 3.1. Any one-sided ideal J in X is two-sided, principal, and has the form Xn = nX for

some rational integer n.

Proof: The result for right ideals follows formally from that for left ideals, since the identity
7y = yz (for any x,y € Q) implies that the conjugate of a right ideal is a left ideal. So suppose J is
a nonzero left ideal. By corollary 1.2 we have J = KXm where m is some minimal (nonzero) element
of J. Since J is a left ideal it is preserved by the group generated by the maps L, for v € X*. If
X were associative then this group would have order 240. But X is not, and by lemma 2.2, the
group is the full rotation group 2G of K. Observe that J has 240 minimal vectors, namely the
vectors um for u € X*. It is obvious that group generated by the L, acts transitively on these,
so the subgroup preserving m has index 240 and order 1,451,520. The only elements of the Fg

lattice with a stabilizer this large are the rational integral multiples of minimal lattice vectors. One
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sees this by considering the full isometry group of X, the Fg Weyl group. The stabilizer of any
vector is (conjugate to) a Weyl group corresponding to a subdiagram of the Eg Dynkin diagram.
The only subdiagram whose associated Weyl group is large enough is the (unique) E; subdiagram.
The conjugates of this subgroup are just the stabilizers of the various minimal vectors u of the
lattice. For each such u, the only vectors stabilized by the stabilizer of u are the real multiples of
u. Therefore m = un for some u € X*, n € Z. Then J = Xm = X - un = Xn and the proof is

complete. O
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