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1. Introduction

Let M be a complete hyperbolic n-manifold of finite volume. By a systole of M we

mean a shortest closed geodesic in M. By the systole length of M we mean the length

of a systole. We denote this by sl (M). In the case when M is closed, the systole length

is simply twice the injectivity radius of M. In the presence of cusps, injectivity radius

becomes arbitrarily small and it is for this reason we use the language of ‘systole

length’.

In the context of hyperbolic surfaces of finite volume, much work has been done

on systoles ; we refer the reader to [2, 10–12] for some results. In dimension 3,

little seems known about systoles. The main result in this paper is the following

(see below for definitions) :

T 1±1. Let M be a closed orientable 3-manifold which does not admit any

Riemannian metric of negative curvature. Let L be a link in M whose complement admits

a complete hyperbolic structure of finite volume. Then sl (McL)% 7±35534….

A particular case of this is when M¯S$. We define the systole length of a link L

with hyperbolic complement to be that of S$cL.

C 1±2. Let LZS$ be a knot or link with hyperbolic complement. Then sl (L)

% 7±35534….

If we specify the type of link, we can sometimes do better (see Theorem 3±4).

We also utilize known bounds on systole lengths of hyperbolic surfaces to obtain

bounds on systole lengths for hyperbolic 3-manifolds containing such surfaces. For

example, we prove in Section 5.

T 5±1. Let M be a compact 3-manifold with nonempty torus boundaries and

hyperbolic interior, such that it contains a properly embedded or properly immersed

incompressible boundary-incompressible orientable surface S
g,p

, with genus g and p

punctures, p& 1, that has no accidental parabolics. Then sl (M)% sl (S
g,p

) where :

(i) if p¯ 1, sl (S
g,p

)% 2 arccosh ((6g®3)}2);

(ii) if p& 2 and (g,p)1 (0, 3), then sl(S
g,p

)% 2 arccosh ((12g­5p­13)}2);

(iii) if p& 2 and (g,p)1 (0, 3), then sl (S
g,p

)% 4 arccosh ((6g®6­3p)}p).

We remark that the constraint that the surface have no accidental parabolics can

be dropped (see Theorem 5±2). In addition, as a special case of interest we deduce:

* Both authors partially supported by the NSF.
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C 5±3. A hyperbolic 3-manifold M containing an incompressible boundary-

incompressible planar surface has sl (M)% 7±05098….

Note that Thurston’s Hyperbolic Dehn Surgery Theorem [13], implies that for all

but a finite number of Dehn fillings on the hyperbolic complement of a knot or link

in a 3-manifold, the systole length will decrease. However, it is not the case that the

systole length always decreases, even if we restrict to Dehn filling a knot in the 3-

sphere. For example, the 6
"
-knot has systole length 0±3306…while the manifold

resulting from (®1, 1)-surgery on the 6
"
-knot has systole length 0±3661…. Other

results on bounding injectivity radii in classes of hyperbolic 3-manifolds are given in

[7].

2. Preliminaries

By a hyperbolic 3-manifold we shall always mean a complete orientable hyperbolic

3-manifold of finite volume. In this section we recall some basic facts that we shall

require (see [4, 9] for details).

We shall always work with the upper-half space model of hyperbolic 3-space, so

that any hyperbolic 3-manifold is obtained as the quotient H$}Γ where Γ is a torsion-

free Kleinian group, acting on H$ with a fundamental polyhedron of finite volume.

A horosphere ( in H$, is defined to be the intersection in H$ of a Euclidean sphere

in H$eS#¢ tangent to S#¢ at p `S#¢. The point p is referred to as the centre of (. The

interior of a horosphere is a horoball. When p is the point at ¢, a horosphere is just

a horizontal plane at some height t up the z-axis.

Let M¯H$}Γ be a hyperbolic 3-manifold, which is non-compact, but of finite

volume. The ends of M consist of a finite number of cusps each of which is

homeomorphic to T#¬[0,¢). On lifting a cusp C to H$ we see a disjoint collection of

horoballs equivalent under the action of Γ. The projection of a collection of disjoint

horoballs covering C in H$ to M is called a horoball neighbourhood of C. We remind

the reader that the centres of all the horospheres arising as lifts of all cusps, are

precisely the fixed points of parabolic elements in Γ.

Fix one cusp C and consider the collection of disjoint horoballs in the pre-image

of C. We can expand these horoballs equivariantly until two first touch. The

projection of such a configuration to M is referred to as a maximal cusp of M. A cross-

section of any cusp is a torus, which we call a cusp torus. The waist size of a cusp is

the length of the shortest essential simple closed curve corresponding to a parabolic

isometry on a maximal cusp torus associated to that cusp.

We remark that in the context of manifolds with more than one cusp we can also

consider the projection of the configuration in H$ where any two horoballs first

become tangent, not necessarily projecting to the same cusp.

By a framing of a cusp torus T we shall mean a choice of two generators for π
"
(T).

By a slope on a cusp torus T we mean an isotopy class of an unoriented simple closed

curve on T. If M has n cusps, the result of Dehn filling some or all these cusps along

a collection of slopes (r
"
,… , r

n
) will be denoted M(r

"
,… , r

n
).

We complete this subsection with the statement of the 2π-Theorem of Gromov and

Thurston (see [5, 6]). Recall that the hyperbolic metric restricts to a Euclidean

metric on a cusp torus.

T 2±1. Let M be a cusped hyperbolic 3-manifold with n cusps. Let T
"
,… ,T

n
be
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disjoint cusp tori for the n cusps of M, and r
i
a slope on T

i
represented by a geodesic α

i

whose length in the Euclidean metric on T
i
is greater than 2π, for each i¯ 1,… ,n. Then

M(r
"
,… , r

n
) admits a metric of negative curvature.

It will be convenient to fix a particular normalization for a maximal cusp. In what

follows we shall always ensure that two parabolic fix-points are at 0 and ¢ and that

a maximal cusp is arranged so that the point of tangency between horoballs centred

at ¢ and 0 occurs at height 1. We will call this the standard form for a maximal cusp.

In addition, in what follows the horosphere arising as the Euclidean plane z¯ 1 will

be denoted (. All horoballs tangent to ( in this configuration will be called full-

sized horoballs.

It is an elementary consequence of the definition of the hyperbolic metric on H$

that Euclidean distance and hyperbolic distance are the same on (. We will make

use of the following lemma that is a consequence of Theorem 2±1 above.

L 2±2. Let M be a closed oriented 3-manifold which does not admit any

Riemannian metric of negative curvature. Let KZM be a knot whose complement admits

a complete hyperbolic structure of finite volume. Let (µ, F) be a framing for the cusp torus

of McK in which µ is a meridian. Then the length of µ in a maximal cusp in standard

form is no greater than 2π.

Proof. By assumption M admits no metric of negative curvature, hence the 2π-

Theorem implies that for a maximal cusp in standard form the length of µ is at most

2π.

We remark that for a maximal cusp in standard form, since all horospheres are

equivalent to ( under the action of the fundamental group, which is by isometries,

all conjugates of µ must have length at most 2π measured on an appropriate

horosphere.

3. Main results for knots

As it contains the main idea we prove the following version of Theorem 1±1 to begin

with. Links will be dealt with in Section 4 below.

T 3±1. Let M be closed orientable 3-manifold which does not admit any

Riemannian metric of negative curvature and KZM be a knot with hyperbolic

complement. Then sl (McK)% 4π.

Proof. Let Γ¯π
"
(McK) with a specified basepoint n being the point of tangency of

a maximal cusp in McK. Abusing notation slightly, we also identify Γ with a

subgroup of SL (2,C). Lifting to H$, we arrange so a maximal cusp is in standard

form and a pre-image of n is the point p¯ (0, 0, 1). Let x
"

be a lift of a meridian of

K (based at p) lying on ( and x
#

(also based at p) a lift of a meridian to the

horosphere bounding the full-sized horoball centred at 0. The path x−"
"

x
#
projects to

a loop g in McK. If this path determines a loxodromic element, Lemma 2±2 and the

remark following it imply that g has length at most 4π, hence the unique geodesic in

the free homotopy class of g has length bounded by 4π. This proves the Theorem,
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unless x−"
"

x
#
projects to a loop which is parabolic. However in this case, it is easy to

see (as we establish below) that ©x
"
, x

#
ª is conjugate in SL (2,C) to the group

-010
2

11 , 0
1

2

0

11. ,

which is the level 2 congruence subgroup in the modular group, and hence ©x
"
, x

#
ª

gives rise to a twice-punctured disc in McK. The unique hyperbolic structure on a

twice punctured disc has shortest closed geodesic of length 2 ln (3­2o2)¯
3±525494…. This will complete the proof.

We show here that ©x
"
, x

#
ª is conjugate to

010
2

11 and 012
0

11 .
Without loss of generality we can conjugate so that

x
"
¯ 010

2

11 and x
#
¯ 01r

0

11 .
Since the product x−"

"
x
#

is parabolic, tr (x−"
"

x
#
)¯³2. The trace cannot equal 2 as

this would force x
#
to be the identity. Hence the trace is ®2 and so we deduce that

r¯ 2 as required.

The following theorem, of interest in its own right, allows us to reduce the bound

of 4π.

T 3±2. Let N be a finite volume hyperbolic 3-manifold with at least one cusp.

Assume that in a maximal cusp torus, there is a non-trivial curve corresponding to a

parabolic isometry of length equal to w. Then :

(1) sl (N)%Re2 arccosh ((2­w#i)}2) if w1 2;

(2) sl (N)% 2 ln (3­2o2)¯ 3±525… if w¯ 2.

Proof. As in Theorem 3±1 we consider a specified basepoint n being the point of

tangency of a maximal cusp in N, and for which on lifting H$, we arrange so a

maximal cusp is in standard form and a pre-image of n is the point p¯ (0, 0, 1). Let

x
"

be the lift of the non-trivial curve c on the cusp boundary to the horosphere

centred at ¢ with beginning endpoint at p and final endpoint at p«, which has

coordinates (w, 0, 1). There is a lift x
#
of a non-trivial curve parallel to c on the cusp

boundary with the same basepoint, the lift lying on the horosphere (
"
bounding the

full-sized horoball centred at (0, 0, 0), having end-points p and some point α. Note

that the product of the corresponding parabolics is itself parabolic only in the specific

case that w¯ 2 and x
"

and x
#

make an angle of 0. We first exclude that case from

consideration.

By replacing x
#
by x−"

#
we may assume without loss that the angle between x

"
and

x
#

at p is at most π}2. The greatest length of a geodesic corresponding to the

loxodromic isometry that is the product of the corresponding pair of parabolic

isometries occurs when the two paths do meet at right angles. Hence, we look at the
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isometry corresponding to x−"
"

x
#
when x

"
and x

#
are at right angles. We can represent

the parabolics corresponding to x−"
"

and x
#

by

010
w

11 and 0 1

iw

0

11 .
The trace of the product is 2­iw#. The result (1) then follows from the standard

identity relating complex length and trace.

When w¯ 2, it could be the case that x
"
and x

#
do meet at angle 0, however, then

they generate a thrice-punctured sphere in the manifold, and moreover, x−"
"

x−"
#

will be loxodromic of length 2 ln (3­2o2)¯ 3±525…. Since this exceeds the bound

we have from inequality (1) when w¯ 2, this becomes our upper bound in this

case.

In the case of knots in manifolds admitting no metric of negative curvature, so

that w% 2π, we have:

C 3±3. Let M be closed orientable 3-manifold which does not admit any

Riemannian metric of negative curvature and KZM be a knot with hyperbolic

complement. Then sl (McK)% 7±35534….

T 3±4. Let LZS$ be a 2-bridge knot or link with hyperbolic complement. Then

sl (L)% 2 arccosh (1­o2)¯ 3±057…. Moreover, the systole length is realized by a

simple geodesic.

Proof. In [1], it was shown that if K is a 2-bridge knot with hyperbolic complement

(meaning it is not a 2-braid), then the waist size of the knot is strictly less than 2.

Hence w as in Theorem 3±2 can be assumed to be less than 2, which gives the result.

If L is a link with more than one component, it has two components and it was

shown in [1] that there is a choice of cusps such that either one touches itself or two

touch each other, and each of those cusps contains a non-trivial curve of equal length

less than 2. In the first case, we can apply Theorem 3±2 directly. In the second case,

we apply the proof of the theorem to the two parabolics that wrap around the two

distinct cusps and that share a basepoint at the point of tangency of the two cusps.

If the shortest geodesic in the manifold were not simple, then if it is thought of as

the product ab in the fundamental group, by cut-and-paste, it is clear that a, b and

ab−" must have shorter representative loops and therefore each be parabolic.

However, this implies that all these elements lie in the fundamental group of an

incompressible, boundary-incompressible thrice-punctured sphere immersed or

embedded in the manifold. In particular, the shortest geodesic must have length

3±525…, contradicting our previous upper bound on that length.

Remark. Notice that the last paragraph of the proof of Theorem 3±4 shows that

for any finite volume hyperbolic 3-manifold M the shortest geodesic is simple unless

sl (M)¯ 3±525….

4. Links

We now prove Theorem 1±1, which we state again here for convenience.

T 1±1. Let M be a closed orientable 3-manifold which does not admit any

Riemannian metric of negative curvature. Let L be a link in M whose complement admits

a complete hyperbolic structure of finite volume. Then sl (McL)% 7±35534….
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Proof. Theorem 2±1 implies that for any collection of disjoint cusps, there must be

at least one with shortest non-trivial curve of length less than 2π. Thus, choose any

collection of disjoint cusps in McL. Suppose first that there is exactly one cusp in the

set such that its shortest non-trivial curve is of length at most 2π. Begin expanding

that cusp. If it expands all the way to maximal, while its waist remains at most 2π,

then once it is maximal, it is tangent to itself and we can apply the argument as in

Theorems 3±1 and 3±2 to get the bound stated.

Otherwise, at some point, the waist size of the cusp becomes greater than 2π as we

expand it. However, then it must have bumped into another cusp and forced it to

shrink as it expands, so that there will still be a cusp in the set with waist size at most

2π. In this case, there must have been a point where both of these cusps touched and

both had equal waist size at most 2π. At this point, take basepoint at the point of

tangency and argue as before taking the waist of one times waist of other.

Now suppose that there are two or more cusps with waist sizes at most 2π. Choose

one and expand it. If it keeps waist size at most 2π until it is maximal, then we are

done. Otherwise, if its waist gets larger than 2π, and it does not force any other cusps

to have waist size below 2π, we are in the case of one fewer cusps with waist size below

2π and we repeat the process. On the other hand, if as we expand this cusp, it does

shrink another cusp to waist size at most 2π, before it goes to waist size greater than

2π, there must have been a point where both of these cusps were touching and had

equal waist size at most 2π. So again we may take the basepoint at the point of

tangency and take the product of their waists, to obtain the required bound for the

length of the systole.

Remark. Note that it is an elementary consequence of residual finiteness of

Kleinian groups that there are hyperbolic 3-manifolds of finite volume with

arbitrarily large systole lengths. As every closed 3-manifold is obtained by surgery

on a hyperbolic link in S$ ([8]), this shows that sl (M) can increase an arbitrarily

large amount under Dehn surgery.

5. Surfaces in 3-manifolds

Note that if S
g,p

is a properly embedded or properly immersed incompressible

boundary-incompressible orientable surface with genus g and p punctures in a

hyperbolic 3-manifold, then (g,p)1 (1, 0), (0, 1) or (0, 2).

T 5±1. Let M be a compact 3-manifold with nonempty torus boundaries and

hyperbolic interior, such that it contains a properly embedded or properly immersed

orientable incompressible boundary-incompressible surface S
g,p

, p& 1, that has no

accidental parabolics. Then sl (M)% sl (S
g,p

) where :

(i) if p¯ 1, sl (S
g,p

)% 2 arccosh ((6g®3)}2);

(ii) if p& 2 and (g,p)1 (0, 3), then sl (S
g,p

)% 2 arccosh ((12g­5p®13)}2);

(iii) if p& 2 and (g,p)1 (0, 3), then sl (S
g,p

)% 4 arccosh ((6g®6­3p)}p).

Proof. Let f : SUM be the immersion. Choose an ideal triangulation of S. Each edge

in the ideal triangulation is mapped to an edge in M, which then lifts to a set of edges

in H$, with well-defined endpoints on the boundary of H$. These can be replaced with

geodesic edges in H$ and the triangular faces can be replaced with ideal triangles,
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which project down to an immersed pleated surface in M made up of the images of

the ideal triangles. The local metric on the immersed surface in M pulls back to a

particular hyperbolic metric on S. A systole on that surface is mapped to a particular

geodesic on the immersed straightened surface. This corresponds to a geodesic in the

manifold of no greater length. Thus, sl (M)% sl (S). The upper bounds for the systole

lengths of a surface with genus g and p punctures come from [2] for (i) and (ii) and

[11] for (iii).

Example. If M is a once-punctured torus bundle, it contains an embedded copy of

the fibre. Hence, we see that sl (S$®K)% sl (S
","

)¯ 1±9428…. In fact, for the figure-

eight knot complement, which is a once-punctured torus bundle, the fibre becomes

an immersed once-punctured torus. The figure-eight knot complement has systole

length 1±087….

T 5±2. Let M be a compact 3-manifold with nonempty torus boundaries and

hyperbolic interior, such that it contains a properly embedded or properly immersed

incompressible boundary-incompressible surface S
g,p

, with genus g and p punctures,

p& 1.

(i) If p& 2, then sl (M)%max ²3±525…,min ²2 arccosh ((12g­5p®13)}2),

4 arccosh ((6g®6­3p)}p)´´.
(ii) If p¯ 1, then sl (M)% 3±525… for g¯ 1 and sl (M)% 2 arccosh (6g®5) for

g& 2.

Proof. In the case there are no accidental parabolics, the result is immediate.

Suppose now that the immersed surface S has an accidental parabolic curve. We will

compress the surface to the boundary of the manifold along the accidental parabolic.

Suppose first we are in the above situation and we are in the case where formula (i)

applies. If the compression does not separate the surface, g becomes g®1 and p

becomes p­2 and this lowers the term in formula (i). Thus we may assume the

compression separates the surface into two surfaces. That for one of the resulting

surfaces, 2 arccosh ((12g­5p®13)}2) is lowered is straightforward. It remains to show

that for one of these surfaces we lower the value of 4 arccosh ((6g®6­3p)}p). If g¯
0 or 1 then this is easy to see directly. Thus we assume that g& 2 and that after the

accidental parabolic compression we get two surfaces of genus a and (g®a) and with

b and c¯p­2®b punctures respectively. We can assume that each of b and c is

greater than 1, for if either equals 1, the other surface will have to cause a lowering

of the systole bound from (i).

Suppose then that for the first of these surfaces the quantity 4 arccosh

((6g®6­3p)}p) is not lowered, so that:

6g®6­3p

p
!

6a®6­3b

b
.

Elementary algebra then yields

c"
p(g®a)

(g®1)
­2. (n)
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On the other hand arguing as above for the second surface gives :

c!
p(g®a®1)

(g®1)
. (nn)

The two equations (n) and (nn) give a contradiction.

In formula (ii), when p¯ 1 and g¯ 1, the accidental parabolic compression could

create a thrice-punctured sphere, giving the upper bound in this case. Otherwise,

when p¯ 1 and g& 2 a similar argument to the above yields a contradiction.

As an example of the application of this theorem, we deduce

C 5±3. If M contains an immersed incompressible boundary-incompressible

planar surface, sl (M)% 7±05098….

Proof. The bound is obtained from formula (i) above when g¯ 0 and p approaches

¢.
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