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Abstract. In this paper a strong form of the Stone-von Neumann property of
the Heisenberg representation is stated and proved. Several results in harmonic
analysis are obtained as a consequence.

0. Introduction

One of the most fundamental spaces in harmonic analysis is the space S(RN ) of
Schwartz functions. As everybody knows this space consists of in�nitely di¤eren-
tiable functions with all their derivatives rapidly decreasing. The Schwartz space
is intimately related with many basic transforms in pure and applied mathematics.
By far, the most important one is the Fourier transform F . In fact, one of the only
reasonable ways to describe F is to de�ne it on S

�
RN
�
using an explicit formula

F (f)(y) =

Z
RN

e2�iy�xf(x)dx;

and then show that F preserve the standard Hermitian product on S
�
RN
�
thus it

extends to a unitary operator on L2
�
RN
�
. This kind of argument of-course depends

on the crucial fact, although not at all a trivial one, that S
�
RN
�
is preserved by

F .
One of our main goals in this paper is to make a formal sense of the following

statement
(*) The Schwartz space S

�
RN
�
is algebraic.

On the phenomenological level, this means that the Schwartz space enjoys many
good properties and exhibit a certain degree of rigidity much like holomorphic
functions. In fact, it appears that these two spaces are more alike than what might
be expected1. As a consequence of (*) we will obtain a novel algebraic formula for
the standard Hermitian product on S

�
RN
�
.

As we mentioned before, S
�
RN
�
is related with the operator F of Fourier trans-

form. Surprisingly, it is less well known that the Fourier transform is a particular
operator in a family of operators acting on S

�
RN
�
and preserving the Hermitian

product. As a �rst approximation, the statement is that there exists a unitary
representation of the real symplectic group Sp = Sp (2N;R)

� : Sp �! U
�
S
�
RN
��
;

Date : July 1, 2007.
1The Schwartz space can be realized (known as the Fock realization) as the space of holomor-

phic functions satisfying certain growth condition. This is not the type of similarity we mean
here. The main di¤erence is that in our realization the growth condition disappear.
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so that the operator F appears as �(w) for a a particular element w 2 Sp called
the Weyl element. The representation � is called the Weil representation.
The correct statement is that � is, in fact, a representation of a double cover

1 �! Z2 �!Mp �! Sp �! 1;

called by Weil [W] themetaplectic cover. This fact has many important implications
to various fundamental phenomenons in mathematics and physics, including the
theory of theta functions and automorphic forms [W], harmonic analysis [F, H1]
and last (but probably not least) quantum mechanics [H2, Se2, Sh]. The metaplectic
sign was studied by several people [W, LV, V] albeit its precise origin remains to
some extent still mysterious. Another main goal of this paper is to make a formal
sense of the following statement

The metaplectic sign is of algebraic origin.

0.1. The Heisenberg representation. As it turns out, the Schwartz space and
the Weil representation are intimately related and both appear as a consequence
of a more fundamental structure i.e., the Heisenberg representation. We will now
proceed to describe this fundamental representation.
The initial data is a 2N -dimensional real symplectic vector space (V; !), the

reader should think of V as RN � RN with the standard symplectic form

! =
NP
i=1

dyi ^ dxi:

The vector space V considered as an abelian group admits a non-trivial central
extension

0! R! H ! V ! 0;

called the Heisenberg group. Concretely, the groupH can be presented asH = V �R
with the multiplication given by

(v; z) � (v0; z0) = (v + v0; z + z0 + 1
2!(v; v

0)):

The center of H is ZH = f(0; z) : z 2 Rg : The symplectic group Sp = Sp(V; !)
acts on H as a group of automorphism via its standard action on the V -coordinate.
One of the most important attributes of H is that it admits principally a unique
irreducible unitary representation. The formal statement is the content of the
celebrated Stone-von Neumann theorem

Theorem 1 (Stone-von Neumann). Let  � = e�z, � 2 iR be a character of the
center ZH . There exists a unique (up to an isomorphism) unitary irreducible rep-
resentation (��;H;H�) with the center acting by ��jZH =  � � IdH.
The representation �� will be referred to as the Heisenberg representation.

0.1.1. The Schwartz space. The modern point of view suggests that the Schwartz
space is naturally identi�ed with the spaceH�

1 of smooth vectors2 in the Heisenberg
representation. The precise statement is that there exists a particular realization
of the Heisenberg representation for which the Hilbert space is the space L2(RN )
of square integrable functions and the subspace of smooth vectors is the Schwartz
space S

�
RN
�
.

2We remind the reader that given a representation (�;G;H) of a Lie group G, a vector v 2 H
is called smooth if the map �v : G �! H de�ned by �v(g) = �(g)v is in�nitely di¤erentiable at
1 2 G.
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Convention: As a rule, the Heisenberg representation will be considered as
a representation of H on the Hilbertian space of smooth vectors. For sim-
plicity, the subscript (�)1 will be everywhere omitted, for example from
now on instead of writing H�

1 we will write simply H�.

0.1.2. The Weil representation. The nature of the Weil representation is more in-
tricate. A direct consequence of Theorem 1 is the existence of a projective repre-
sentation e� : Sp! PU(H�):

The construction of e� out of the Heisenberg representation �� is standard. The
group Sp acts on the category of (unitary) representations of H by

� 7! �g,

for every representation �, where �g acts on the same Hilbert space as � but the
action is given by �g(h) = �(g(h)): Clearly �� and ��;g have central character
 � hence by Theorem 1 they are isomorphic. Since the space HomH(��; ��;g)
is one dimensional, choosing for every g 2 Sp a non-zero representative e�(g) 2
HomH(�

�; ��;g) gives the required projective representation. From this point of
view however, the fact that the projective representation e� can be linearized up to
a sign is not transparent.

0.2. Main results. The main result of this paper is a formulation of a stronger
form of the Stone-von Neumann property of the Heisenberg representation (S-vN
property for short). More precisely, It will be shown that the strong S-vN property
is governed by an algebraic structure. The following applications of this result will
be demonstrated

(1) An algebraic characterization of the Schwartz space S
�
RN
�
will be ob-

tained. In addition, a novel algebraic formula for the Hermitian structure
of the Heisenberg representation will be established. This will put the
Heisenberg-Weil representation on algebraic grounds eliminating all mea-
sure theoretic attributes.

(2) A solution to a question of Deligne [DE] will be obtained. This question
concerns the existence of a possible natural pairing between various inter-
esting function spaces which are associated with the Heisenberg representa-
tion. These pairings generalize the natural pairing between the Heisenberg
representations which are associated to opposite central weights �.

(3) An algebraic origin of the metaplectic sign will be revealed and the obstruc-
tion to having an analytic Weil representation of the complexi�ed group SpC
will be speci�ed. Both of these results are greatly inspired by Deligne�s pa-
per [DE] which also address these two issues in the two dimensional setting.
The main di¤erence of our approach from that of [DE] is that our construc-
tions are algebraic, hence are strictly of a �nite nature, while the approach
in [DE] is analytic and requires to manipulate with in�nite dimensional
objects.

Remark 1. Result 1 is related to an old question in physics raised by David Bohm
and his school concerning the origin of the Hermitian structure in quantum me-
chanics. In the language of physicists this is the quest for a conceptual explanation
of Dirac�s Bra/Ket operations.
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We will spend the rest of the introduction to explaining the main ideas which
underlay the strong S-vN property, taking result 1 as the main leading theme of
our discussion. It will be bene�cial to start with a toy example which will turn out
to be very suggestive.

0.3. The space of holomorphic functions (toy example). The space O of
holomorphic functions in one variable consists of in�nitely di¤erentiate functions
on R2 satisfying the Cauchy-Riemann equation

(0.1) @zf =
�
@x+i@y

2

�
f = 0:

The space O enjoys many good properties and it exhibit strong rigidity. One of
main manifestations of this rigidity is the Cauchy property.

Theorem 2 (Cauchy�s Theorem). Given f 2 O

f(w) =
1

2�i

Z



f(z)

z � wdz;

for any w 2 R2 and 
 : S1 ! R2rw is any curve homologous to the standard curve

0 (t) = w + e2�it.

In plain language, the Cauchy property says that the delta functional �w when
restricted to O can be calculated using an integral formula, symbolically it can be
written as follows

(0.2) �w (f) =
1

2�i

Z



f(z)

z � wdz

for every f 2 O. Our goal is to track the conceptual mechanism which makes the
space of holomorphic functions so rigid. As a result we will obtain a conceptual
formulation of the Cauchy property. Then in analogy we will proceed to show that
the Schwartz space obeys the same mechanism, which is principally the content of
the strong S-vN property. As an application, a Schwartz analogues of the Cauchy
property will be demonstrated. Namely, the standard Hermitian product in S

�
RN
�

which is given in terms of integration with respect to the Lebegues measure

hf; gi =
Z

x2RN

f(x)g(x)dx;

for every f; g 2 S
�
RN
�
will be replaced by an equivalent algebraic formula of the

form

(0.3) hf; gi =
Z



G(f; g)

where G(f; g) is a closed N -form on the Lagrangian Grassmanian3 Lag = Lag (V )
and 
 2 HN (Lag;C) is a non-trivial homology class.
As it turns out, the language of algebraic D-modules supplies a convenient for-

malism to achieving this goal.

3The Lagrangian Grassmanian of a symplectic vector space V is the classifying space of all
maximal isotropic (Lagrangian) subspaces in V .
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Remark 2. On the philosophical level, the space Lag which appears in our for-
mulas should hold the same importance to Harmonic analysis as the standard N -
dimensional Euclidian space RN , yet it is of a completely di¤erent nature i.e., it is
compact and contrary to RN it is homologically non-trivial. It is tempting to refer
to Lag as the "forgotten parameters of harmonic analysis".

0.3.1. The Cauchy-Riemann D-module. Let DR2 be the algebra of linear di¤eren-
tial operators on R2, also referred to as the two dimensional Weyl-algebra. More
concretely, DR2 is a C-algebra generated by

x1; x2; @x1 ; @x2 ;

subject to the relations

[x1; x2] = [@x1 ; @x2 ] = 0;

[@xi ; xj ] = �ij :

We shall construct a module MCR over the algebra DR2 which will encode the
Cauchy-Riemann equation. The construction is completely straight forward. Let
ICR � DR2 be the left ideal generated by the Cauchy-Riemann di¤erential operator,
namely

ICR = DR2 � @z:

We de�ne MCR to be the left DR2-module given by

MCR=DR2=ICR:

The space of holomorphic functions can be naturally identi�ed with the space of
morphisms

(0.4) HomDR2
(MCR; C

1
R2):

Here, C1R2 is considered with its natural DR2-action. The identi�cation is very
simple, given a morphism ' : MCR ! C1R2 ; one associate to it the function f' =
'(1). It is easy to verify that indeed f' satis�es the Cauchy-Riemann equation

@zf' = @z'(1) = '(@z) = 0;

where the second equality is due to ' being a morphism of DR2-modules and the
third equality is because @z 2 ICR. On the other direction, starting from a function
f satisfying (0.1) one associate to it a morphism of DR2-modules

'f :MCR �! C1R2 ;

de�ned by 'f (d) = d(f) for every d 2 DR2 . Again, it is easy to verify that indeed
'f factors through the quotient MCR since @zf = 0. The space (0.4) is called the
space of solutions of MCR in the target DR2-module C1R2 .
Summary: the space O of holomorphic functions is characterized as the space

of solutions of an algebraic D-module. This innocent looking observation has far
reaching implications. In particular it will allow us to obtain a conceptual expla-
nation of the Cauchy property.
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0.3.2. Algebraic functionals. The Cauchy property (0.2) will turn out to be the
following statement

(**) The functional �w is algebraic.
Our next goal is to make a formal sense of the above statement. Apriory the

functional �w is sitting in the "stupid" dual O� = HomC(O;C)�. The interesting
claim is that inside O� there exists various much smaller subspaces of algebraic
functionals. The formal content of (**) is that �w lies in one of these algebraic
subspaces.
Our plan is to associate to every point w 2 R2 an algebraic subspace O_w � O�.

The idea behind the construction of O_w can be summarized as follows
Main idea: Instead of dualizing O as a plain vector space, dualize the DR2-
module MCR.

In more details, dualizing the DR2-module MCR yields another DR2-module
which we denote by M_

CR. The space O_w is taken to be

(0.5) O_w , HomDR2
(M_

CR; C
1
R2rw):

It remains to explain why O_w is naturally sitting inside O�: This is a consequence
of the following fundamental theorem

Theorem 3. Given a non-trivial class 
 2 H1

�
R2 r w;C

�
, there exists a natural

non-degenerate pairing
B
 : O �O_w ! C.

From the D-module theoretic point of view Cauchy theorem becomes simply the
statement

Theorem 4. The functional �w is algebraic, namely there exists a vector �w 2 O_w
such that

�w (f) = B
(f;�w):

for every f 2 O.

It should be noted that the integral form of the Cauchy formula follows form the
general form of the pairing B
 .

Remark 3. The stream of ideas that was demonstrated above agrees with the gen-
eral methodology of algebraic analysis. This methodology suggests that many an-
alytic phenomena are in fact governed by algebraic structures and can be recast
completely in algebraic terms.

Theorem 3 is a particular case of a general statement concerning the existence
of a natural pairing

(0.6) B : Sol (M)� Sol (M_) �! C;

between the solution space of a D-module M and the solution space of the dual
D-module M_ [GO]. The main technical ingredient in the construction of such
pairing is the Green class associated with the D-module M . The Green class of
a D-module appears to be a far reaching generalization of the classical notion of
green form of a di¤erential operator. In order to give the reader some intuitive
appreciation, we will proceed to give an informal explanation of the construction
of the pairing (0.6).
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0.4. Canonical pairings. Let X be a smooth algebraic manifold. A general
enough example for us is the manifold X = PNR . We denote by DX the algebra of
linear di¤erential operators on X. For example in the case X = An the algebra DX

is the Weyl algebra with 2n generators. The category of �nitely generated (left)
DX -module will be denoted by Coh(DX). A useful interpretation (however not the
only one) of an object M in Coh(DX) is viewing it as a generalization of system of
linear di¤erential equations. The dictionary is quite simple and follows the same
lines as in the Cauchy-Riemann example. Given a di¤erential operator P 2 DX we
can associate to it the DX -module

MP = DX=IP ;

where IP is the left ideal generated by P , namely

IP = DX � P:

More generally, if P = (P1; ::; Pl) is a system of linear di¤erential operators then
we associate to it the DX -module

MP =
lL
i=1

DX=IPi :

Assumption: For the sake of the introduction, we will only consider modules
associated with a single di¤erential operator.

The algebraic DX -module MP accounts for the algebraic content of the di¤er-
ential equation

Pf = 0;

if we want to account also for the solutions of such equation we need to choose a
target DX -module F , which is usually taken to be of an analytic nature. The rule
is very simple, for example if we want to consider C1-solutions then we take F
to be C1X ; alternatively if we want to consider generalized solutions then we take
F to be the sheaf of generalized functions D0

X . Given a choice of a target module
F , the space of F -solutions of the system P is naturally identi�ed with the vector
space

Sol(MP ; F ) , HomDX
(MP ; F )

where the identi�cation sends a morphism ' 2 HomDX
(MP ; F ) to the function

'(1) 2 F .
Summary: The D-module theoretic formulation demonstrate a splitting be-
tween algebraic structures and analytic ones, where MP accounts for the
algebraic content and the target module F accounts for the analytic con-
tent.

Higher solution spaces. The D-module point of view suggest an interesting gener-
alization to the classical notion of solution of a di¤erential equation, namely the
notion of higher solutions. More precisely, if the target module F is not speci�ed
then HomDX

(MP ; �) establish a functor

HomDX
(MP ; �) : DX -Mod �! V ect:

Following the general yoga of homological algebra, higher solutions appear as the
derived functors

RiHomDX
(MP ; �) : DX -Mod �! V ect;
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That is, the space of level i, F -solutions of Mp is

RiHomDX
(MP ; F )

Remark 4. It is quite curious that although from the homological view point these
solution spaces of higher level are as legitimate as the solution space of level zero,
they seem to play no essential part in the classical theory of linear partial di¤erential
equations.

0.4.1. Algebraic functionals. As we did for the Cauchy-Riemann equation, our goal
is to de�ne the notion of an algebraic functional on the solution space Sol(MP ; C

1
X ).

The main step is to dualize the module MP . The technical problem is that a
rigorous de�nition of duality in the D-module setting requires us to work in the
derived category of coherent DX -modules. This higher level of sophistication is the
price (a small one to the opinion of this author) we have to pay if we want to replace
analytic manipulations with algebraic ones. For the sake of the introduction it will
be su¢ cient for us to know that an object in this derived category can be thought
of as a complex of DX -modules

M� : :: �!M�1 d�!M0 d�!M1 �! ::

The category Coh(DX) of usual coherent DX -modules is naturally sitting inside
the derived category as complexes supported only at degree 0. The derived category
supports an operation of duality, called Verdier duality functor. The Verdier duality
functor is an anti-equivalence

D : DCoh(DX)! DCoh(DX);

Cohen-Macaulay modules. It is quite often that starting from an honestDX -module
M after applying duality, D (M) is no longer a module but it is a complex supported
in various degrees. However, for a DX -module of the form MP , the dual is again
an honest DX -module. More precisely D (MP ) is a complex which is supported at
a single cohomological degree, namely it is of the form

D (MP ) : ::: �! 0 �!M_
P �! 0 �! 0 �! 0 �! :::

where M_
P is an honest DX -module sitting at degree d = � (dimX � 1) : Equiva-

lently we can write
D (MP ) 'M_

P [d]

where the notation [d] is the standard cohomological shift which means that we
consider M_

P as sitting at degree �d.
This kind of situation, for which the dual D (M) is an honest module sitting

at a single cohomological degree is exceptional. Such modules are called Cohen-
Macaulay. In general, the number d varies between 0 and dimX and it serves as a
measure for the size of the moduleM . The general rule is that the fewer relationsM
contains the larger d is: Since in our example MP contains a single relation coming
from the di¤erential operator P hence d is almost maximal, that is d = dimX � 1.
The other extreme situation is when d = 0, such modules are the smallest possible
and are called holonomic, or in the classical language are sometimes referred to as
maximally over-determined systems. Holonomic modules appear to play a central
role in many diverse areas in mathematics and physics.
We consider the following space of algebraic functionals

Sol(MP ; C
1
X )

_ , Sol (M_
P ; C

1
X ) :
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Similarly as for the toy example of the Cauchy-Riemann equation, also in general
there exists a pairing

(0.7) B
 : Sol (MP ; C
1
X )� Sol(M_

P ; C
1
X )! C.

where as suggested by the notation, this pairing depends on a choice of an homology
class 
 2 Hd(X;C).
The main technical tool for constructing the pairing (0.7) is the notion of Green

class of a D-module.
The green class (intuitive explanation). The intuitive idea behind the construction
of the Green class is straight forward. It will be suggestive to consider for a brief
moment the simpler category V ect of vector spaces. Given a vector space V there
exits a natural adjunction isomorphism

(0.8) AdjV : HomC (V; V )
'�! HomC (C; V �

N
C V ) ;

Under this isomorphism, the identity element Id 2 HomC (V; V ) is sent to a dis-
tinguished element GV = AdjV (Id) 2 HomC (C; V �

N
C V ). The element GV can

described explicitly as
GV =

X
i

e�i 
 ei,

where ei is an arbitrary basis in V and e�i is the corresponding dual basis of V
�.

In the D-module setting there exists an analogue of (0.8), that is for given a
DX -module M there exists a natural adjunction isomorphism

AdjM : HomDX
(M;M)

'�! HomDX
(OX ;D (M)

N
OM) ;

The Green class of M is de�ned to be the distinguished vector

GM = AdjM (Id) 2 HomDX
(OX ;D (M)

N
OM) .

The de-Rham construction. The Green class GM can be realized in concrete terms
using the de-Rham complex, which, in turn, is probably one of the most basic con-
structions in the theory of algebraic D-modules. The de-Rham complex DR� (M)
is de�ned as follows

DR�(M) : M
d�!M

N
O 


1 d�! :::
d�!M

N
O 


dimX ;

whereM is sitting at degree 0 and d is the usual de-Rham di¤erential given in local
coordinates by4

d(m
 !) = m
 d! +
NP
i=1

@xim
 dxi ^ !.

The Green class. The Green class of M appears as a distinguished class

(0.9) GM 2 H0(DR� (D (M)
N

OM) :

For our speci�c example, since D (MP ) ' M_
P [dimX � 1] it is easy to show that

(0.9) takes a simpler form

GMP
2 HdimX�1 (DR� (M_

P

N
OMP )) :

More concretely, the Green class GMP
can be presented by a (non-unique) chain

GMP
=
P
i

m_
i 
mi 
 !i;

4It is a standard argument to show that in fact d does not depend on the choice of the local
coordinates.
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where mi 2MP , m_
i 2M_

P and !i 2 
dimX�1
X and which is closed with respect to

the de-Rham di¤erential
d (GMP

) = 0.

Construction of the pairing. Now we are �nally ready to describe the pairing (0.7).
The construction depends on a choice of an homology class 
 2 HdimX�1 (X;C).
Given a pair of solutions

� 2 Sol(MP ; C
1
X );

' 2 Sol(M_
P ; C

1
X );

the tensor product '
 � de�nes a morphism of complexes

DR� (M_
P

N
OMP )

'
��! DR� (C1X ) ;

which in particular induces a map on the level of cohomologies, in particular it
yields a map

HdimX�1(DR� (M_
P

N
OMP )

'
��! HdimX�1(DR� (C1X ))

applying the last map to the Green class GMP
one obtains a class in

HdimX�1(DR� (C1X )) = HdimX�1 (X;C) ;

which we denote by G(�; '). We de�ne the pairing between � and ' by

B
 (�; ') =

Z



G(�; '):

0.4.2. The Cauchy theorem revisited. Reconsidering the Cauchy-Riemann D-module
MCR. A direct computation reveals that MCR is principally self dual, that is

M_
CR 'MCR;

therefore, the Green class G
CR

= GMCR
lies in H1 (DR� (MCR

N
OMCR)). A

direct computation reveals that GCR is represented by the following chain

(0.10) GCR = e
 e
 dz;
where e 2 MCR is the standard generator. Let us verify that (0.10) is a closed
chain. Applying the de-Rham di¤erential we obtain

d (GCR) = @ze
 e
 dz ^ dz + e
 @ze
 dz ^ dz
+@ze
 e
 dz ^ dz + e
 @ze
 dz ^ dz

= 0 + 0 + 0 + 0 = 0;

noting that @ze = 0 is the relation de�ning the module MCR. Consider the homol-
ogy class 
 2 H1(R2nw;C) which is represented by the closed curve 
 (t) = e2�it+w.
Given solutions

� 2 HomDR2
(MCR; C

1
R2) ;

' 2 HomDR2

�
M_
CR; C

1
R2nw

�
;

the pairing B
 (�; ') is given by

(0.11) B
 (�; ') =

Z



G(�; ') =

Z



' (e) � (e) dz:
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If we identify � and ' with the holomorphic functions f = � (1) and g = ' (1)
respectively then B
 (f; g) takes the form

B
 (f; g) =

Z



f (z) g (z) dz

In order to prove the Cauchy Theorem (Theorem 4) we have to exhibit a vector

�w 2 HomDR2

�
M_
CR; C

1
R2nw

�
such that

�w (f) = B
 (f;�w) ;

for every f 2 O. The answer in this case is very simple, take �w to be the unique
solution satisfying

�w (e) =
1

2�i(z�w) :

Remark 5. The reader might think that the pairing B
 always admits a simple
form like (0.11). This is not the case! already for a general enough di¤erential
operator P the green class GMP

might be quite complicated and as a result B
 takes
a complicated form as well.

0.5. The strong Stone-von Neumann property. Let us summarize what we
learned so far from our toy example. The space O of holomorphic functions in one
variable can be characterized as the space

HomDR2
(MCR; C

1
R2) ;

of solutions of an algebraic DR2-module MCR. In this framework, using duality in
the category of D-modules, we were able to exhibit various subspaces O_w � O� of
algebraic functionals (0.5), de�ned as

O_w = HomDR2

�
M_
CR; C

1
R2rw

�
;

where M_
CR is the dual of the D-module MCR (more precisely, the Verdier dual

D(MCR) is isomorphic to M_
CR[1]). The pairing between O and O_w turn out to

depend on a choice of a non-trivial homology class 
 2 H1(R2 rw;C). Given such
a class, for any pair of solutions � 2 O and ' 2 O_w the pairing B
(�; ') is given
by

B
(�; ') =

Z



G(�; ');

We concluded that from this point of view, the Cauchy Theorem becomes the
assertion that the functional �w 2 O� is algebraic, namely it can be presented by

�w (f) = B
 (f;�w) ,

where �w is a �xed vector in the algebraic space O_w and f runs inside O.

0.5.1. The Schwartz space revisited. The strong S-vN property asserts that much
like O, also the Schwartz space S

�
RN
�
can be characterized as a space of solutions

of an algebraic D-module which we denote5 by M�, namely

S
�
RN
�
= HomDX

(M�; C1X ) :

5The superscript � is related to the central weight of the Heisenberg repreentation which
silently governs the picture.
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However, In order to realize this assertion, a radical change of perspective should
take place. Unlike the situation for O where the D-module was de�ned on the same
space of parameters R2, for Schwartz functions the space X is not simply RN as
might be expected, but should be taken to be a much larger space of parameters.
We will proceed to give an explanation of the last assertion.
Canonical model of the Heisenberg representation. As was mentioned before, the
Schwartz space S

�
RN
�
is identi�ed with the space H� of smooth vectors in the

Heisenberg representation. One of the most important attributes of the Heisenberg
representation is that it admits a multitude of di¤erent models. These models
appear in families and a particular family of such models is associated with maximal
isotropic (Lagrangian) spaces in V . In more details given a choice of a Lagrangian
subspace L in V there exists a model of the Heisenberg representation which we
denote by

(��L;H;H�
L) ;

At this point it is su¢ cient for us to know only that the space H�
L is a subspace

of functions in C1 (H). We will use the notation Lag = Lag (V ) to denote the
Lagrangian Grassmanian associated to V . All the models H�

L are just di¤erent
realizations of the same object, more precisely all of these models are equivalent
as representations of H which is a consequence of Theorem 1. This means that
for every pair of Lagrangians L;M 2 Lag there exists an isomorphism of H-
representations (intertwiner)

FM;L 2 HomH (H�
L;H�

M ) :

We are now ready to formulate a naive interpretation of the strong Sv-N property.

Strong S-vN property: For every pair (M;L) 2 Lag � Lag there exists a
canonical choice of an intertwiner FM;L.

Fixing this system of canonical intertwiners, any smooth vector v 2 H� in the
Heisenberg representation can be presented as system of vectors

(vL 2 H�
L : L 2 Lag) ;

satisfying the compatibility condition

(0.12) vM = FM;L(vL);

for every M;L 2 Lag.
Now putting this idea in a more formal language, we can say that the vector v

can be considered as a single function in C1(Lag � H) satisfying a system P of
di¤erential equations which encodes the compatibility condition (0.12).
The previous discussion suggests that the right choice of the parameter space X

is
X = Lag �H:

Now we can use our acquired language of D-modules and claim that there exists
a DX -module

M� =MP ,

such that the space H� of smooth vectors can be identi�ed with the space of solu-
tions

HomDX
(M�; C1X )

We are now ready to spell out an "almost" precise formulation of the strong
S-vN property.
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Theorem 5 (strong S-vN property). There exists a DX-module M� so that the
Schwartz space S

�
RN
�
is naturally identi�ed as an H-representation6 with

HomDX
(M�; C1X ) :

The D-module M� will be called the Weil D-module.

Remark 6. In the case dimV = 2, the module M�, under appropriate trivializa-
tions, corresponds to the heat di¤erential operator. Therefore, roughly speaking, the
Schwartz space S (R) can be identi�ed with solutions of the heat equation on the
one dimensional real projective line.

Why just "almost" precise. We use the term "almost", since the actual statement
involves some technicalities. The most prominent one is that M� is not an honest
DX -module but is a module over slightly more general di¤erential algebra which is
associated to the determinant line bundle on Lag. For this reason we spend a large
portion of Section 1 to explain the formalism of such kind of di¤erential algebras.
Intuitively, this technicality is related to the fact that the system FM;L of in-

tertwiners do not form a �at connection but a projective one, namely they do not
satisfy the multiplicativity condition

FN;M � FM;L = FN;L;

for every triple of Lagrangian subspaces M;N;L 2 Lag. Instead [LV], there exists
a canonical function

c : Lag � Lag � Lag �! C;
so that

FN;M � FM;L = c(L;N;M)FN;L:

The function c is intimately related to the Maslov index.

0.5.2. Algebraic Hilbertian structure. The Weil D-module M� enjoys many desired
properties, in particular it is Cohen-Macaulay. In fact its dual can be described
explicitly

D (M�) 'M��[N ].

where M�� is the module associated to the Heisenberg representation of the op-
posite central weight. As a consequence of this last statement, using the general
construction (0.7) we can obtain a novel formula for the natural pairing between
the corresponding spaces of smooth vectors H� and H��. In more details, if we
choose a non-trivial class 
 2 HN (Lag;C) we can de�ne a natural pairing

(0.13) B
 : H� �H�� �! C.

If one assumes in addition that the central weight � is purely imaginary, that
is � 2 iR then it can be shown that complex conjugation yields an anti-linear
isomorphism

(�) : H� �! H��;

therefore one can de�ne an H-invariant Hermitian product on H� by

h�; 'i
 , B
(�; ') =

Z



G(�; '):

6The H-action on HomDX

�
M�; C1X

�
is explained below.
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SinceH� admits a unique (up to scalar multiplication)H-invariant Hermitian prod-
uct, it implies that h�; �i
 is proportional to the standard Hermitian product given
by integration with respect to the Lebegues measure on RN , namely

(0.14)
Z
RN

�(x)'(x)dx =

Z



G(�; '):

The reader should note that while the left side of (0.14) is given by integration
of a function on the non-compact domain RN , the right side is given by integration
of a closed N -form on a compact homology class sitting in a completely di¤erent
space of parameters, namely the Lagrangian Grassmanian Lag.

0.5.3. The Heisenberg representation revisited. The Heisenberg representation, at
least on the in�nitesimal level, is algebraic. The precise meaning of the last assertion
is that the action d�� of the Heisenberg Lie algebra h on the Hilbertian space

H� = Sol(M�; C1X );

is encoded in the algebraic structure of the DX -module M�. In more details, there
exists a map of algebras

�� : U(h)��!HomDX
(M�;M�) ;

where U(h)� is the universal enveloping algebra of h considered with the opposite
multiplication. The action d�� can be de�ned in terms of the map �� as follows.
Given an element � 2 h and a vector ' 2 Sol(M�; C1X ), we let

d��(�)' , ' ��� (�) .
The fact that this action preserves the Hermitian product is principally a tau-

tology. Since the Hermitian product is de�ned using the canonical class

GM� 2 H0 (DR� (D (M�)
N

OM
�)) ;

this implies that any automorphism � of the module M� �xes GM� , namely

(0.15) �(GM�) = GM� :

Therefore if we consider endomorphisms of the form �� (�) as in�nitesimal gener-
ators of such automorphism, then (0.15) implies that

�� (�) (GM�) = 0;

which in turns yields the result.

0.5.4. The Weil representation revisited. A similar argument works for the Weil
representation as well. That is, the in�nitesimal Weil representation is encoded in
the algebraic structure of the DX -module M�. The mechanism is the same. There
exists a map of algebras

�� : U(sp)��!HomDX
(M�;M�) ;

where U(sp)� is the universal enveloping algebra of sp considered with the opposite
multiplication. Using the map ��, the action d� of sp on H� is de�ned by

d��(�)' , ' ��� (�) .
for every element � 2 sp and a vector ' 2 Sol(M�; C1X ). Again the fact that this
action preserves the Hermitian product follows from similar arguments as in the
Heisenberg case.
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The di¤erence from the previous situation of the Heisenberg action is that in
the case of the symplectic group, the action of the Lie algebra can be "exponen-
tiated" to an action of the Lie group Sp. Formally, this is the statement that M�

admits a (weak) Sp-equivariant structure, which roughly means that there exists
an homomorphism of groups

(0.16) �� : Sp! AutC(M
�):

such that
d�� (�)� �# = �� (�) ;

for every � 2 sp. Here �# is the vector �eld on Lag associated to �.

Remark 7. Looking at (0.16) the reader should ask (and rightly so) where do the
metaplectic sign comes from. The answer is hidden in the small technicality issue
that we mentioned after stating the strong S-vN property. Roughly, the explana-
tion is that the module M� is equipped with a canonical projective connection. In
order to consider solutions, this projector must be linearized �rst (make it �at).
This principally can be done in two ways. The upshot is that non of these two
linearization is preserved by the group Sp. In fact, Sp switches between the two.

0.6. Structure of the paper. Apart from the introduction, this paper is logically
divided into four sections.

� In Section 1, we recall some facts and notations from the algebraic theory
of D-modules. Speci�cally, we introduce the notion of a di¤erential algebra
and its associated category of coherent modules. We mainly concentrate our
attention on di¤erential algebras associated with in�nitesimal symmetries
of principal vector bundles. This particular type of di¤erential algebras is
used in order to give a rigorous de�nition to the classical notion of projective
connection. We discuss the notion of a target module and the associated
spaces of solutions. We discuss the Verdier duality functor both in the con-
text of usual D-modules and also in the context of more general di¤erential
algebras. We de�ne the Green class of a D-module, which generalizes the
classical notion of Green form of a partial di¤erential operator. Using the
Green class we are able to de�ne canonical pairings between solution spaces
of a D-module and its Verdier dual. Finally we discuss (weak) equivariance
structures and associated representations on the space of solutions.

� In Section 2, the basic constructions are introduced and the main result of
this paper is formulated - the strong Stone-von Neumann property of the
Heisenberg representation. We begin by introducing various Di¤erential
algebras. Then an in�nite dimensional holomorphic vector bundle W� is
constructed, a-lá Deligne, on the Lagrangian Grassmanian Lag. The Strong
Sv-N property is equivalent to the existence of a canonical projective con-
nection onW�, which formally is given by an action of a di¤erential algebra
which is associated to the determinant line bundle. This form of the strong
Sv-N property is not yet satisfactory. Next step we take is to recast the
construction in the language of algebraic D-modules. In this step we intro-
duce an (algebraic) D-moduleM� on Lag�H, which �nally puts the Sv-N
property on algebraic grounds. A technical advantage of the algebraic set-
ting is the ability to use powerful techniques from homological algebra. We
study various solution spaces associated toM�. The main theorem of this
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section concerns the explicit description of the Verdier dual ofM�. Finally
we show thatM� is equipped with a natural Sp-equivariance structure.

� In Section 3, several applications of the strong Sv-N property in its D-
module theoretic formulation are established. First application concerns
the existence of a canonical pairing between various function spaces, this
establish, in particular, an a¢ rmative answer to a question of Deligne [DE].
Second application concerns the construction of the Weil representation of
the real symplectic group, here we show that the strong Sv-N property
directly implies the metaplectic sign.

� In Appendix A, proofs of all the statements that appear in the paper are
given.

0.7. Acknowledgements. I would like to thank my scienti�c advisor J. Bernstein
for teaching me the theory of algebraic D-modules and patiently explaining to me
many of the ideas which appear in this work. Also, I would like to thank my friend
and coauthor Shamgar Gurevich, the ideology underlying the main construction in
this work is strongly motivated from our joint projects and many discussions that
we had over the last few years. I wish to thank Victor Ginzburg for reading early
versions of this text and giving valuable remarks. Finally, I would like to mention
the wonderful paper of Goncharov [GO], I am sure the applications of this work are
far from being exhausted.

1. Preliminaries from the theory of D-modules

We need to recall some facts and notations about (algebraic) D-modules and also
about slightly more general di¤erential algebras and their categories of modules.
Let X be a smooth algebraic variety over C. Throughout the paper we will make
use of the following convention. Calligraphic letters are used to denote sheaves
of vector spaces/algebras/modules (for example DX denotes the sheaf of algebras
of di¤erential operators on X). Usual uppercase letters are used to denote vector
spaces/algebras/modules (for example DX = �(X;DX) is the algebra of global
linear di¤erential operators). Most of the material presented in this section about
usual D-modules appears in one form or another in [BO], [KA] and [BE]. The
material about general di¤erential algebras is partly taken from [BB]. The notion
of Green class of a usual D-module is discussed thoroughly in [GO].

1.1. Di¤erential algebras.

1.1.1. Standard setting. Let DX denote the sheaf of algebras of linear di¤erential
operators on X or equivalently saying DX = Di�(OX) is the sheaf of all di¤erential
endomorphisms of the structure sheaf.

Example 1. Assume X = AN . In this case the algebra DAN = �(X;DAN ) is
generated by

x1; ::; xN ; @1; ::; @N ;

subject to the relations

[xi; xj ] = 0; [@i; @j ] = 0;

[@i; xj ] = �ij:

The algebra DAN is called the Weyl algebra:
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An important example is the D-module associated to a di¤erential equation or
more generally to a system of di¤erential equations

Example 2. Let P =
P
�
a�(x)@

� 2 DAN be a di¤erential operator. We use the

standard convention where the indices � are N tuples � = (�1; ::; �N ) and @� stands
for @�1x1 � :: � @

�n
xn . De�ne

MP = DAN =DANP:
More generally, given a matrix of di¤erential operators (Pij)1�i�m;1�j�n , de�ne

M(Pij) = coker

�
(Pij) :

mL
i=1

DAN �!
nL
i=1

DAN
�
:

We denote by Coh(DX) (RCoh(DX) ) the category of coherent sheaves of left
(right) DX -modules and by Dcoh(DX) (RDcoh(DX) ) the associated derived cate-
gory.

Remark 8. In case M is a vector bundle then an action of DX is equivalent to
the classical notion of a �at connection onM.

Solution spaces. Let M 2 Coh(DX) or more generally an object in the derived
category DCoh(DX). The reader should note thatM can be thought of as a gen-
eralization of the classical notion of system of (algebraic) linear partial di¤erential
equations (In fact a D-module with a system of generators stands as the precise
generalization but we will not be so pedantic here). Given another DX -module F ,
not necessarily quasicoherent (usually F is taken to be a module of an analytic
nature) one can consider the space of solutions ofM in F

Sol(M;F) , HomDX
(M;F);

which generalizes the classical notion of solution of a linear partial di¤erential equa-
tion. The module F is sometimes called the target module: For example, if we con-
sider a module of the formM =MP where P 2 DX is a linear algebraic di¤erential
operators (see Example 2) and take F = OanX then Sol(MP ;F) can be identi�ed
with the space Sol(P;OanX ) of analytic solutions of the di¤erential equation Pf = 0
via

' 2 Sol(M;F) 7! '(1);

where 1 2MP = �(X;MP ) is the standard generator ofMP . The D-module point
of view immediately leads to an interesting generalization of higher solution spaces

Soli(M;F) , RiHomDX
(M;F):

In this paper we consider two types of target modules.

� Holomorphic type. Let V be an analytic vector bundle on Xan equipped
with a �at connection, take

Fan= V;
considered as a sheaf on the Zarisky site of X.

� C1 type. This type is associated with a choice of a real structure on X.
Equivalently, assume X is a smooth scheme over R. Let us assume in
addition that X(R), the space of real points of X, is a smooth manifold of
dimension dimX(R) = dimX. We denote by ex the morphism of schemes

ex : X (C) �! X;
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obtained by extension of scalars. Let V be a complex vector bundle on
X(R) equipped with a �at connection, V can be considered as a sheaf on
the Zarisky site of X. De�ne

F1=ex�V = OX(C)
N

ex�OX
ex�V:

The sheaf F1 is naturally equipped with a DX(C)-action.

Example 3. Consider the real scheme X = A2R. In this case X (C) = C2 and
X(R) = R2. Let MCR2Coh(DX(C)) be the D-module associated with the Cauchy-
Riemann equation, that is

MCR= DC2=DC2
�
@x+i@y

2

�
:

Let F1=ex�C1X(R) then Sol(MCR;F1) is naturally identi�ed with the space of
holomorphic functions on R2.

1.1.2. General setting. We begin with some general de�nitions (taken from [BB]).

De�nition 1 (Di¤erential bimodule). A di¤erential OX-bimodule on X is a qua-
sicoherent sheaf on X �X supported on the diagonal � � X �X.

De�nition 2 (Di¤erential algebra). An OX-di¤erential algebra, or simply a D-
algebra on X is a sheaf D of associative algebras on X equipped with a morphism
of algebras i : OX �! D such that D is a di¤erential OX-bimodule.

It is sometimes convenient to describe a di¤erential algebra as the universal
enveloping algebra of a Lie algebroid.

De�nition 3. A Lie algebroid T on X is a quasicoherent OX-module equipped with
a morphism of OX-modules � : T �!TanX (where TanX is the tangent sheaf on
X) and a C-linear pairing [�; �] : T

N
C T �! T such that

� [�; �] is a Lie algebra bracket and � commutes with the brackets.
� for �1; �2 2 T , and f 2 OX one has [�1; f�2] = f [�1; �2] + �(�1)(f)�2

Given a Lie algebroid T , its universal enveloping D-algebra U(T ) is a sheaf of
algebras equipped with the morphisms of sheaves i : OX �! U(T ), iT : T �! U(T )
and it is generated as an algebra by the images of these morphisms subject to the
following relations

� i is a morphism of algebras.
� iT is a morphism of Lie algebras.
� For f 2 OX ; � 2 T one has iT (f�) = i(f)iT (�) and [iT (�); i(f)] = i(�(�)f).

The relation between a Lie algebroid and its universal enveloping D-algebra is
similar to the relation between a Lie algebra and its associated universal enveloping
algebra.

Example 4. The most standard example of a Lie algebroid is the tangent sheaf
TanX , where [�; �] is given by the commutator operation between vector �elds and
� is the identity. The sheaf of linear di¤erential operators DX is the universal
enveloping algebra of TanX , namely we have

DX = U(TanX):
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Example 5. Assume X is equipped with an action � : G�X �! X of an algebraic
group G. The action � yields an anti homomorphism of Lie algebras

d� : g �!� (X;TanX) ;

sending an element � 2 g to the vector �eld �# , d� (�).The sheaf gX = g
OX is
equipped with a natural structure of a Lie algebroid as follows

� The commutator is given by

[� 
 f; � 
 g] = [�; �]
 f � g � � 
 f � �# (g) + � 
 �# (f) � g:

� The morphism � : gX ! TanX is given by

� (� 
 f) = �f � �#.

Given a di¤erential algebra D, we denote by Coh(D) (RCoh(D)) the category
of left (right) coherent D-modules and by DCoh(D) (RDCoh(D)) the associated
derived category.
D-algebras associated with principal bundles. In this paper we will be interested
with a particular type of di¤erential algebras which are associated with in�nitesimal
symmetries of principal bundles. More precisely, let G be a connected algebraic
group. Let P ��! X be a principal right G-bundle. Let TP be the Lie algebroid of
in�nitesimal symmetries of P . Formally TP is given by

TP = ��(TanP )
G;

where TanP is the tangent sheaf of P . the operation of push forward of vector
�elds supplies the morphism � : TP ! TanX . The kernel ker(�) is denoted by
T vP and consists of G-invariant vertical vector �elds on P . The center Z(TP ) can
be canonically identi�ed with the constant sheaf Z(g). The universal enveloping
algebra U(T P ) is denoted by DP . Its center Z(DP ) is canonically identi�ed with
the constant sheaf associated with the symmetric algebra S�(Z(g)).
Monodromic algebras. The algebra DP can be specialized with respect to characters
of its center. More precisely, given a character � 2 Z(g)�, we can de�ne the quotient
algebra

D�P = DP
N

S�(Z(g)) C�:

Algebras of the form D�P are called monodromic di¤erential algebras. An object
M2 Coh(D�P ) is called �-monodromic.
Commutative example. A particularly important example for us is when the group
G is commutative, namely G ' Grm � Gsa. In this case Z(TP ) = g and therefore
Z(DP ) = S�(g). Fixing a character � 2 g�, the monodromic algebra is given by

D�P = DP 
S�(g) C�:

A vector bundle with a projective connection is by de�nition a vector bundleM
equipped with a �-monodromic structure, that is a D�P -action.
Solution spaces. Formally, the notion of solution space of a DP -module is similar
to the corresponding notion in the standard setting, however, a classical analogy in
terms of solutions of di¤erential equations is less naive. Let M 2 Coh(DP ) or more
generally an object in the derived category DCoh(DP ) and F be another DP -module
called the target module. The space of solutions ofM in F is

Sol(M;F) , HomDP
(M;F);
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and more generally, the space of higher solutions is

Soli(M;F) , RiHomDP
(M;F):

As before, we consider two types of target modules.
� Holomorphic type. Let (�;G; V ) be an algebraic representation of the local
symmetry group of P , and let V =P an�GanV be the associated analytic
vector bundle. We take

Fan= V;
considered as a sheaf on the Zarisky site of X. Clearly, F is a DP -module.

� C1 type. Assume X;P and G are de�ned over R and moreover the cor-
responding spaces of real points are smooth manifolds of dimensions equal
to the krull dimension of the corresponding schemes. In addition, assume
the projection map � : P �! X is de�ned over R. Let (�;G(R); V ) be a
�nite dimensional (complex) representation of the Lie group G(R) and let
V =P (R) �G(R) V be the associated (complex) vector bundle. The vector
bundle V is naturally equipped with a DP (R)-action where DP (R) is the
universal enveloping algebra of the Lie algebroid

TP (R) = C
N

R ��(TanP (R))
G(R):

Considering V as a sheaf on the Zarisky site of X, de�ne
F1=ex�V = OX(C)

N
ex�OX

ex�V:
The sheaf F1 is naturally equipped with a DP (C)-action.

1.2. Verdier Duality. Existence of a duality functor for D-modules is a most
interesting and a non-trivial phenomenon. Let us �rst recall its construction in the
standard setting of usual D-modules.

1.2.1. Standard setting. The category DCoh(DX) admits an anti-equivalence (called
Verdier duality)

D : DCoh(DX) �! DCoh(DX):
de�ned by D(M) = RHom(M;D
�topX )[dimX]; where

D

�top

X = DX
N

OX

�topX = DX

N
OX

VdimX
TanX ;

is the dualizing module. In more details, D
�topX is a bimodule admitting two
commuting left actions of DX . The �rst action is given by the standard left action
of DX on itself and the second is de�ned as follows. Given an element d
� 2 D


�top

X

we have
� Action of functions. for every f 2 OX

(1.1) f B d
 � = df 
 � = d
 f� .
� Action of vector �elds. for every � 2 TX

(1.2) � B d
 � = d
 [�; �]� d� 
 �:
The veri�cation that the above formulas extend to a left action of DX is left to

the reader. Another way to think about D is as the composition of two functors

D =
�
�
N

O
VdimX

TanX

�
� eD;

where eD : DCoh(DX) �! RDCoh(DX)
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is the an anti-equivalence sending a left DX -moduleM 2 DCoh(DX) to the right
DX -module eD(M) = RHomDX

(M;DX)[dimX] and�
�
N

O
VdimX

TanX

�
: RDCoh(DX) �! DCoh(DX);

is the standard equivalence between the categories of right and left DX -modules,
i.e., given a right moduleM2 RCoh(DX) the left action onM

N
O
VdimX

TanX
is given by (1.1) and (1.2).
Cohen-Macaulay D-modules. It is most common that starting from a coherent mod-
ule, its dual is no longer an honest module but is a complex with non-trivial coho-
mologies in various degrees. Yet, for particular type of modules the dual is itself
a module (up-to a cohomological shift). This phenomenon is non-trivial and quite
rare and therefore considered interesting. This motivates the following de�nition.

De�nition 4. A module M2Coh(DX) is called Cohen-Macaulay if D(M) '
M_[d] for someM_ 2 Coh(DX).

Given a Cohen-Macaulay module M2Coh(DX) we call M_ = D(M)[�d] the
naive dual ofM.
Explicit examples. Let us compute the Verdier dual for some explicit modules.

Example 6. Let X = A1. ConsiderM = OA1 . We will show that
D(OA1) ' OA1 :

In order to compute D(M) we need to consider a free resolution P � q:i�!M. Such
a resolution is7

P � : DA1
�1

@x�! DA1
0
;

where @x acts by multiplication from the right. We have

D(M) ' RHomDA1
(P �;D


�1

A1 )[1]

'
�
D


�1

A1
�1

@x�! D

�1

A1
0

�
;

where the map in the last expression is multiplication by @x from the left. Finally
we use the identi�cation DA1

'�! D
�1A1 sending d to d
 dx�1 and we obtain�
D


�1

A1
�1

@x�! D

�1

A1
0

�
'
�
DA1
�1

�@x�! DA1
0

�
The right side of the last isomorphism is quasi-isomorphic to OA1 , which yields

the result.

Example 7. This example is a generalization of the previous example. We take X
to be an arbitrary smooth algebraic variety. We will show that D(OX) ' OX : We
use the Koszul resolution

Koz�(DX)
q:i�! OX ,

where Koz�i(DX) = DX
N

O
Vi TX and the di¤erential is given by Cartan formu-

las, for example

� d�1 : Koz�1(DX)! Koz0(DX) is given by d
 @ 7�! d@.

7The small integer numbers which appear below the complex denote the cohomological degree.
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� d�2 : Koz�2(DX) ! Koz�1(DX) is given by d 
 @0 ^ @1 7�! d@1 
 @0 �
d@0 
 @1 � d
 [@0; @1].

We have
D(OX) ' RHomDX

(Koz�(DX);D

�top

X )[dimX]:

The left side can be computed in two stages. First one shows that RHomDX
(Koz�(DX);DX)

is quasi-isomorphic to

DR� (DX) : DX
0

d�!DX
1

N
O 


1 d�! :::
d�! DX

dimX

N
O 


dimX ;

second one shows that DR� (DX)
N

O D

�top

X is quasi-isomorphic to Koz�(DX)[�dimX].
These two arguments conclude the computation.

Example 8. In this example we study the D-module associated with a linear dif-
ferential operator on X = AN . Let P 2 DAN , namely P =

P
�
a�(x)@

�. Let

MP = DAN =DANP . We will show that
D(MP ) 'MP t [N � 1];

where P t =
P
�
(�@)� a�(x) is the transpose of P , with (�@)� = (�@x1)

�1 � :: �

(�@xn)
�N . We consider the resolution P� q:i�!MP given by

DAN
�1

P�! DAN
0
;

where P is acting by multiplication from the right. We have

D(MP ) ' RHomDX
(P�;D


�N

AN )[N ]

'
 
D


�N

AN
�N

P�! D

�N

AN
�N+1

!
;

where in the last expression P is acting by multiplication from the left. Using the
identi�cation DAN

'�! D
�NAN given by d 7�! d
 dx�1 we can write 
D


�N

AN
�N

P�! D

�N

AN
�N+1

!
'
�
DAN
�N

P t

�! DAN
�N+1

�
;

yielding the result.

1.2.2. General setting. The functor of Verdier duality exists also in the setting of
general di¤erential algebras. For the sake of concreteness, we will restrict ourselves
to the case of di¤erential algebras of the form DP for P ��! X a principal G-
bundle. The category DCoh(DP ) admits an anti-equivalence D : DCoh(DP ) �!
DCoh(DP ),de�ned by

D(M)=RHomDP
(M;D


�top

P )[dimP ];

where
D


�top

P = DP
N

OX
��(


�top
P )G = DP

N
OX

VdimP TP ,
is the dualizing bimodule. The two commuting left DP -actions are given by similar
formulas as in the standard setting. The Verdier functor restricts to give a duality
functor on the monodromic categories. More precisely, for any character � 2 Z(g)�
we have an induced functor

D : DCoh(D�P ) �! DCoh(D��P ),
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given by

(1.3) D(M)=RHomDP
(M;D�;


�top

P )[dimP � dimZ(G)]:

where D�;

�1

P = D�P
N

OX

VdimP TP . In the case when G is commutative, since
dimZ(G) = dimG then (1.3) is given by

D(M)=RHomDP
(M;D�;


�top

P )[dimX]:

As before we distinguish a class of modules which are well behaved with respect
to D.

De�nition 5. A module M2Coh(DP ) (Coh(D�P )) is called Cohen-Macaulay if
D(M) 'M_[d] for someM_ 2 Coh(DP ) (Coh(D��P )).

1.3. The Green class of a D-module.

"... we can say that there is only one formula (which we shall call
"fundamental formula") in the whole theory of partial di¤erential
equations, no matter to which type they belong. "

J. Hadamard, Lectures on the Cauchy problem.

The notion of Green class of a D-module generalizes the classical notion of green
form of a partial di¤erential operator. It is satisfying to note that using the ho-
mological language of derived categories this notion can be de�ned in a straight
forward manner and apply to much more general situations. We begin by explain-
ing this notion in the standard setting of usual D-modules and then introduce its
generalization.

1.3.1. Standard setting. The construction is based on the following fundamental
adjunction property of the Verdier duality functor.

Theorem 6 (Adjunction property). Let M;N ;L 2DCoh(DX). There exists a
canonical isomorphism

RHomDX
(N
N

OM;L) ' RHomDX
(N ;D(M)

N
O L):

Applying Theorem 6 to N = OX andM = L we obtain

RHomDX
(M;M) ' RHomDX

(OX ;D(M)
N

OM):

In particular we have

(1.4) R0HomDX
(M;M) ' R0HomDX

(OX ;D(M)
N

OM):

Let us interpret both sides of (1.4).

� The left hand side of (1.4) is simply HomDX
(M;M).

� The right hand side can be interpreted as follows. Consider the Koszul
resolution Koz�(DX)

q:i�! OX . We have

RHomDX
(OX ;D(M)

N
OM) ' HomDX

(Koz�(DX);D(M)
N

OM)

The right hand side of the above equation can be written as

HomDX
(Koz�(DX);D(M)

N
OM) = DR�(D(M)

N
OM));
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where DR� stands for the standard de-Rham construction, that is for a
coherent module N 2 Coh(DX)
DR�(N ) = R�(DR�(N ))

= R�(N
0

d�!N
1

N
O 


1 d�! :::
d�! N

dimX

N
O 


dimX);

where d is the standard de-Rham di¤erential. In particular,

R0HomDX
(OX ;D(M)

N
OM) ' H0(DR�(D(M)

N
OM)):

The left hand side of (1.4) consists of a canonical element, namely the iden-
tity morphism Id 2 HomDX

(M;M). The adjunction isomorphism sends it to a
distinguished class GM 2 H0(DR�(D(M)

N
OM)). The class GM is called the

Green class of the D-moduleM. Let us explain the construction in more concrete
terms. For simplicity assume X is a¢ ne therefore R� = � and in addition as-
sumeM is Cohen-Macaulay, namelyM2Coh(DX) and D(M) ' M_[d] for some
M_2Coh(DX). In this situation we can write

HomDX
(OX ;D(M)

N
OM) ' HomDX

(OX ;M_[d]
N

OM)

' RdHomDX
(OX ;M_N

OM)

' Hd(DR�(M_N
OM));

therefore, the class GM is represented by a degree d cycle

GM =
P
i

m_
i 
mi 
 !i 2 DRd(M_N

OM)

where mi 2M, m_
i 2M_ and !i 2 
d. If we drop the assumption that X is a¢ ne

then representing the Green class GM is slightly more complicated. It can be done
using the µCech resolution. Choose an a¢ ne covering U = fUig of X . We can write

DR� (M_N
OM) = R�(X;DR�(M_N

OM))

' �Cech�(U ;DR�(M_N
OM))

The Green class can be represented by a cycle

GM 2 Hd
�
�Cech�(U ;DR�(M_N

OM))
�
:

1.3.2. General setting. The notion of Green class can be generalized to the setting
of di¤erential algebras of the form DP and their monodromic specializations D�P .
The construction is based on a generalization of Theorem 6.

Theorem 7. LetM;N ;L 2DCoh(DP ). There exists a canonical isomorphism
(1.5) RHomDP

(N
N

OM;L) ' RHomDP
(N ;D(M)

N
O L):

In the monodromic situation whenM2 DCoh(D�P ),N 2 DCoh(D�P ) and L 2DCoh(D
�+�
P )

the adjunction isomorphism can be written as

(1.6) RHomD�+�
P
(N
N

OM;L) ' RHomD�
P
(N ;D(M)

N
O L):

Note that N
N

OM;L 2 DCoh(D�+�P ) and N ;D(M)
N

O L 2DCoh(D�P )hence
both sides of (1.6) make sense. Taking N = OX andM = L, we obtain

RHomDP
(M;M) ' RHomDP

(OX ;D(M)
N

OM);

which in particular implies that

(1.7) HomDP
(M;M) ' R0HomDP

(OX ;D(M)
N

OM);
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The right hand side of (1.7) can be written as H0(DR�P (D(M)
N

OM)). Here
DR�P (N ) is a de-Rham like complex associated with a DP -module N

DR�P (N ) = R� (DR�P (N ))

= R�(N
0

d�!N
1

N
O T

�
P

d�! :::
d�! N

dimX

N
O
Vtop T �P );

with the di¤erential given by the same formulas as in the standard setting. The
distinguished class GM 2 H0(DR�P (D(M)

N
OM)) which corresponds to Id 2

HomD�
P
(M;M) is called the Green class of M. We are interested in a particular

situation when G is commutative andM2DCoh(D�P ). In this case using (1.6) we
can write

HomD�
P
(M;M) ' HomD0

P
(OX ;D(M)

N
OM)

' HomDX
(OX ;D(M)

N
OM)

' H0(DR�(D(M)
N

OM)):

If we assume that X is a¢ ne and M is Caohen-Macaulay, namely D(M) '
M_[d] for someM_2Coh(DX) then

GM 2 Hd(DR�(M_N
OM));

therefore in this case the class GM is represented by a degree d cycle

GM =
P
i

m_
i 
mi 
 !i 2 DRd(M_N

OM)

where mi 2 M, m_
i 2 M_ and !i 2 
d. As before, without the assumption that

X is a¢ ne we only have

GM 2 Hd
�
�Cech�(U ;DR�(M_N

OM))
�
:

1.4. Natural pairings. Using the Green class one can construct a natural pairing
between solution spaces of a D-module and its Verdier dual. This construction is
very basic and extremely useful. As we always do, we �rst explain it in the setting
of usual D-modules and then introduce its generalization.

1.4.1. Standard setting.
Canonical pairing between solution spaces of holomorphic type. Before we introduce
the construction in its full generality it might be bene�cial to start with more
particular circumstance. Let us assume that X is a¢ ne andM is Cohen-Macaulay,
namely D(M) ' M_[d] for some M_2Coh(DX). Let V be a holomorphic vector
bundle on Xan equipped with a �at connection and Fan be the corresponding
target DX -module. Let 
 2 Hd(X(R);C) be a non-trivial homology class.

We will de�ne a pairing

B
 : Sol(M;Fan)� Sol(M_;Fan�) �! C,

where Fan� is associated with the dual vector bundle V�. The pairing B
 is de�ned
as follows. Given solutions

� 2 Sol(M;Fan);
' 2 Sol(M_;Fan�):

Applying '
 � to the Green class GM 2 Hd(DR�(M_N
OM)) we obtain a class

'
 �(GM) 2 Hd(DR�(Fan�
N

O F
an)),
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Applying further the canonical morphism of DX -modules
m : Fan�

N
O F

an �! OanX ;

yields an honest cohomology class

m � '
 �(GM) 2 Hd(DR�(OanX )) = Hd(Xan;C).
Now, de�ne

B
(�; ') := hm � '
 �(GM); 
i ;
where h�; �i stands for the canonical pairing between homology and cohomology.
The previous construction is a particular case of the following general statement

Theorem 8. Let M2DCoh(DX) and 
 2 Hd(X;C) a non-trivial class. There
exists a natural pairing

(1.8) B
 : R
iHomDX

(M;Fan)� R2N�i�dHomDX
(DM;F�an) �! C,

where N = dimX

Canonical pairing between solution spaces of C1 type. Let us assume �rst that X is
a¢ ne andM is Cohen-Macaulay, namely D(M) 'M_[d] for someM_2Coh(DX).
Assume X is de�ned over R so that X (R) is a smooth manifold of dimension
dimX (R) = dimX. Let V be a complex vector bundle on the manifold X(R)
equipped with a �at connection. Let F1 = ex�V be the corresponding target
module. Let 
 2 Hd(X(R);C) be a non-trivial homology class. In the same
manner as before we can de�ne a pairing

B
 : Sol(M;F1)� Sol(M_;F1�) �! C.
Given solutions

� 2 Sol(M;F1);
' 2 Sol(M;F1�);

applying '
 � to the Green class GM 2 Hd(DR�(M_N
OM)) yields a class

'
 �(GM) 2 Hd(DR�(F1�N
O F

1)),

Applying further the canonical morphism of DX -modules
m : F1�N

O F
1 �! ex�C1X(R)

We obtain an honest cohomology class

m � '
 �(GM) 2 Hd(DR�(ex�C1X(R))) = Hd(X (R) ;C).

De�ne

B
(�; ') := hm � '
 �(GM); 
i ;
The general statement is

Theorem 9. LetM2DCoh(DX) and 
 2 Hd(X (R) ;C) a non-trivial class. There
exists a natural pairing

(1.9) B
 : R
iHomDX

(M;F1)� R2N�i�dHomDX
(DM;F�1) �! C,

where N = dimX:

1.4.2. General setting.
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Canonical pairing between solution spaces of holomorphic type. Let V be an analytic
vector bundle equipped with aDP -action and Fan the associated targetDP -module.
The following theorem is a generalization of Theorem 8.

Theorem 10. Let M2DCoh(DP ) and 
 2 Hd(X;C) a non-trivial class. There
exists a natural paring

(1.10) B
 : R
iHomDP

(M;Fan)� R2N�i�dHomDP
(DM;Fan�) �! C;

where N = dimX.

Canonical pairing between solution spaces of C1 type. Assume X;P and G are
de�ned over R so that X (R) ; P (R) and G (R) are smooth manifold of the correct
dimensions. Let V be a complex vector bundle on the manifold X(R) equipped
with a DP (R)-action and Let F1 = ex�V be the corresponding target module. The
following theorem is a generalization of Theorem 9.

Theorem 11. Let M2DCoh(DP ) and 
 2 Hd(X;C) a non-trivial class. There
exists a natural paring

(1.11) B
 : R
iHomDP

(M;F1)� R2N�i�dHomDP
(DM;F1�) �! C;

where N = dimX.

1.5. Equivariant structures . There are two main notions of equivariance in the
theory of D-modules. The �rst kind is weak equivariance (also called weak Harish-
Chandra structure) and the second is strong equivariance (strong Harish-Chandra
structure). In this paper we will mainly be interested in the �rst kind which will
simply be called equivariance structure.

1.5.1. Standard setting. Assume the variety X is equipped with a group action

� : G�X �! X;

where G is a connected reductive group. LetM2Coh(DX).
Naive de�nition. As a �rst approximation, a G-equivariant structure on M is a
family of isomorphisms of DX -modules

�g :M
'�! g�M , �

�
gM,

satisfying the following multiplicative condition

(1.12) �gh = h��g � �h:

Explicitly,

�gh : M�!(gh)�M'h�g�M;

h��g � �h : M �h�! h�M h��g�! h�g�M.

Formal de�nition. The formal de�nition, of-course, has to take into account the
topology of G. Let pX and pG denote the projection maps from G�X on G and X
respectively. Let TanvertG�X � TanG�X be the Lie subalgebroid of the tangent sheaf
consisting of vertical vector �elds with respect to the projection pG. Precisely, an
element � 2 TanvertG�X if and only if pG�� = 0. Let DvertG�X = U(TanvertG�X) � DG�X
the corresponding universal enveloping algebra.
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De�nition 6. A G-equivariant structure on M is an isomorphism of DvertG�X-
modules

� : p�XM
'�! ��M,

satisfying a cocycle condition on G�G�X.

The cocycle condition in De�nition 6 is de�ned as follows. We have three maps

(Id; �) : G�G�X �! G�X;
(m; Id) : G�G�X �! G�X;

p23 : G�G�X �! G�X;

where p23 is the projection on the right G � X copy. We have two maps form
(m; Id)�p�XM to (Id; �)���M de�ned by the following two chains of compositions

(m; Id)�p�XM
(m;Id)���! (m; Id)���M' (Id; �)���M;

(m; Id)�p�XM ' p�23p
�
XM

p�23��! p�23�
�M'(Id; �)�p�XM

(Id;�)���! (Id; �)���M.

All the morphisms in the above chains are isomorphisms. The cocycle condition
is requirement for the equality of this pair of maps. The reader should convince
himself that this condition implies the multiplicativity condition (1.12).
Examples of equivariant modules. If M is of the form M = DX=I, where I is a
sheaf of left ideals thenM is G-equivariant if and only if

g(I) � I; for every g 2 G.

For this particular type of situation,M is strongly G-equivariant if in addition
we require

�# 2 I; for every � 2 g,

where �# 2 TanX is the vector �eld associated to the element �. We will not
develop this notion further.
Let us write some speci�c modules.

Example 9. Let X = G = Gm and M = DGm=DGm(x@x � �). The di¤erential
operator x@x�� is G-invariant, thereforeM is G-equivariant. In the case � = 0;M
is strongly G-equivariant. Assume � = n 2 Z, the solution space SolDX

(M;OanGm)
is the one dimensional representation of Gm associated with the character zn.

Example 10. Let X = G = Ga and M = DGa=DGa(@x � �). The di¤erential
operator @x � � is G-invariant, therefore M is G-equivariant. In the case � =
0; M is strongly G-equivariant. The solution space SolDX

(M;OanGa) is the one
dimensional representation of Ga associated with the character e�z.
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Action of the group G on solution spaces. If the moduleM is G-equivariant and F
is a G-equivariant target DX -module then the group G acts in a natural manner
on the space of solutions

Sol(M;F):
As a �rst approximation this action is obtained as follows. De�ne

Sol(M;F) g��! Sol(g�M; g�F)
(�g;�

�1
g )

�! Sol(M;F):

where �g : F
'�! g�F , for every g 2 G is the system of isomorphisms coming

form the equivariance property of F . Formally, we have to consider the isomor-
phisms

� : p�XM
'�! ��M;

� : p�XF
'�! ��F ;

using these we can de�ne

Sol(M;F) ���! HomDvert
G�X

(��M; ��F) (�;�
�1)�! HomDvert

G�X
(p�XM; p�XF);

�nally, we have an injective map

HomDvert
G�X

(p�XM; p�XF) ,! p�XSol(M;F);

altogether, we obtain a map

Sol(�) : Sol(M;F) �! p�XSol(M;F):

The map Sol(�) gives the required action. Given an element g 2 G. The
restriction from G�X to the �ber fgg �X yields a map

Resg : p
�
XSol(M;F) �! Sol(M;F):

The composition Resg � Sol(�) gives the action of the element g on Sol(M;F).

1.5.2. General setting. We will discuss G-equivariant structures only for coherent
modules over di¤erential algebras of the form DP . We shall denote the group of
local symmetries of P by K in order to distinguish it from the group G of "global"
symmetries. Assume P is equipped with a G-action

� : G� P �! P ,

which commutes with the K action, namely �g(pk) = �g(p)k. We denote the
induced action of G on X by �. LetM2Coh(DP ):
Naive de�nition. We repeat the same exposition as before. As a �rst approximation
a G-equivariant structure onM is a family of isomorphisms of DP -modules

�g :M
'�! ��gM = OX

N
��gOX

��gM,

satisfying the multiplicative condition

�gh = ��h�g � �h:
Note that ��gM is equipped with a DP -action which is generated by
� Action of functions. For every f 2 OX , f B (g 
m) = fg 
m.
� Action of vector �elds. For every � 2 TP , � B (g 
m) = ��(g)
m+ g 

�g�(�)m.
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Remark 9. The above formulas are very similar to the standard ones. We use the
map � in order to push forward K-invariant vector �elds on P .

Formal de�nition. Let pP and pG denote the projection maps from G�P to P and
G respectively. Let T vertG�P � TG�P be the Lie subalgebroid on G � X of vertical
K-invariant vector �elds with respect to the projection pG. More precisely, an
element � 2 T vertG�P if and only if pG�(�) = 0. We denote by DvertG�P = U(T

vert
G�P ) the

corresponding universal enveloping algebra. A G-equivariant structure onM is an
isomorphism of DvertG�P -modules

� : p�XM
'�! ��M,

where pX : G � X ! X is the projector on X. Note that both p�XM and ��M
are equipped with a natural DvertG�P -action (we leave the veri�cation of this fact to
the reader). The isomorphism � should satisfy a cocycle condition on G�G�X,
identical to the one in the standard setting thus we omit it.
Examples of equivariant modules. A standard example is when M is of the form
M = DP =I where I � DP is a sheaf of left ideals. In this caseM is G-equivariant
if and only if g(I) � I for every g 2 G. In this particular situation, M is called
strongly G-equivariant if �# 2 I for every � 2 g where �# 2 �(X; TP ) is the global
vector �eld on P associated with �.
Action of the group G on the solution space. If the moduleM is equipped with a
G-equivariant structure then the group G acts in a natural manner on the solution
space Sol(M;F), yielding a map

Sol (�) : Sol(M;F) �! p�XSol(M;F)
where F is any G-equivariant target DP -module.

2. The strong Stone-von Neumann property

In this section, the algebraic formulation of the strong Stone-von Neumann prop-
erty of the Heisenberg representation is formulated. Throughout this section we use
the following terminology. Let (V; !) be a 2N -dimensional symplectic vector space
over C and let Lag = Lag (V ) denotes the Lagrangian Grassmanian associated to
the vector space V .

2.1. Basic di¤erential algebras.

2.1.1. Di¤erential algebras on the Lagrangian Grassmanian.
The total algebra. Let Fr ! Lag be the canonical frame bundle. An element in
the �ber FrjL is an ordered basis

�!e = (e1; ::; eN ) of L. The frame bundle Fr is a
right principal GLN -bundle with the action given by

(e1; ::; eN )!
�
NP
i=1

gi1ei; ::;
NP
i=1

giNeN

�
for g = (gij)1�i;j�N :

Let TFr be the Lie algebroid of in�nitesimal symmetries of Fr. Recall the de�-
nition

TFr = ��(TanFr)
GLN :

The �bers of TFr can be described in linear algebraic terms. An element � 2
TFrjL is a linear map

� : L! V;
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satisfying that !� = !(�(�); �) is a symmetric (possibly degenerate) bilinear form
on L. The �bers of the vertical subalgebra T vFr take the form

T vFrjL = Hom(L;L):

As a consequence there exists a canonical global section Id 2 �(Lag; T vFr) which
spans the center Z(TFr) of DFr:
The determinant algebra. We denote by C ! Lag the canonical vector bundle on
Lag with �bers CjL = L. The top wedge product C^N is called the determinant
line bundle and it is denoted by Det. Let Det� ! Lag be the associated principal
Gm-bundle, that is Det� is the complement to the zero section in Det. Let TDet�
be the Lie algebroid of in�nitesimal symmetries of Det� and DDet� be its universal
enveloping algebra. The vertical subalgebra T vDet� can be easily described

T vDet�jL = Hom(^topL;^topL):

As a consequence there exists a canonical global section Id 2 �(Lag; T vDet�)
which spans the center Z(TDet�):
We have a surjective morphism of Lie algebroids

TFr � TDet� ;

sending the central element IdFr to N � IdDet� with kernel K given by

KjL = f� : L! L : Tr(�) = 0g :

Monodromic algebras. Since both Z(DFr) and Z(DDet�) admit a canonical gen-
erator hence specifying a complex number � 2 C we can de�ne the monodromic
algebras

D�Fr = DFr=DFr(Id� �);
D�Det� = DDet�=DDet�(Id� �):

Example 11. We have the following natural identi�cations
� Let � = �1: The monodromic algebra D�1Det� is canonically identi�ed with
Di¤(Det) the sheaf of di¤erential endomorphisms of the determinant bun-
dle.

� Let � = �1=2. The D-algebra D1=2Det� "ïs" the sheaf of algebras of di¤er-
ential operators of the virtual square root Det1=2 of the determinant line
bundle. This statement can be made precise if one restricts to an open set
U where DetjU admits a square root Det1=2. On such an open set we have

D�1=2Det� = Di�(Det
1=2).

The case � = 1=2 is similar but with respect the square root of the dual
line bundle Det�1.

2.1.2. Di¤erential algebras on the symplectic vector space. Let H = HV = V � C
be the Heisenberg group which is now a complex algebraic group.
The Heisenberg algebra. Considering H as merely a ZH -principal bundle (Torsor)

H
�! V;

We can associate to it the Lie algebroid TH = ��(TanH)
ZH and its universal

enveloping algebra DH = U(T H). Let us denote by } the standard generator
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(0; 1) 2 ZH hence we can (and will) identify ZH with the additive group Ga. We
have

Z(TH) = C � };
Z(DH) = C[}]:

For any � 2 C the monodromic algebra D�H is naturally identi�ed with the
sheaf of di¤erential endomorphisms of the associated line bundle8 L� = H �ZH C�.
Since the variety V is a¢ ne, the sheaf DH is determined by the algebra DH of its
global sections. Precisely DH = OV

N
�(OV )

DH : The same relation holds of-course
between D�H and the algebra D�

H of its global sections. It will be convenient to
describe DH and D�

H in terms of the group structure of H. We have the following
simple lemma.

Lemma 1.

DH = U(h)�
N

C[}] U(h);
D�
H = DH

N
C[}] C� = U

�(h)
�N

C[}] U
�(h);

where U�(h) = U(h)
N

C[}] C� and U(h)
� denotes the opposite algebra to U(h):

2.1.3. Di¤erential algebras on the total space Lag�V . We have di¤erential algebras
DFr�H and DDet��H associated with the GLN � ZH -principal bundle Fr �H !
Lag � V and the Gm � ZH -principal bundle Det� � H ! Lag � V respectively.
We will use the following notations

Dtot = DFr�H ;
Ddet = DDet��H :

These algebras split into an exterior tensor product of the previously discussed
algebras

Dtot = DFr �DH ;
Ddet = DDet� �DH :

For any pair of complex numbers �; � 2 C we have the monodromic algebras
D�;�tot = D�Fr �D�H
D�;�det = D�Det� �D�H :

We will also consider the partial specializations

D�tot = DFr �D�H
D�det = DDet� �D�H :

2.2. The strong Stone-von Neumann property. In this subsection, an in�-
nite dimensional vector bundle W� on Lag with a canonical projective connection
will be constructed. Principally, our construction resembles that of Deligne [DE],
except that here the construction is given for any dimension and uses the more
elegant formalism of di¤erential algebras what makes the considerations a bit more
transparent (we hope). In this subsection and the next all spaces are considered as
complex analytic with the usual analytic topology.

8The notation C� stands for the one dimensional representation of the ZH associated to the
central character  � (z) = e�z .
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2.2.1. The vector bundle. The groups H and its opposite H� act on the space of
global sections �(V;L�) through right and left translations respectively. These
actions clearly commute. We de�ne the �ber of the vector bundle W� at a point
L 2 Lag to be

W�
jL =

L�(V;L�);
where L�(V;L�) is the subspace of L-invariant sections when L is considered as a
subgroup of H�.

Lemma 2. The spaces W�
jL glue into an holomorphic (in�nite dimensional) vector

bundle on Lag.

2.2.2. Projective connection. Our goal is to exhibit a D1=2Det� -module structure on
W�. The strategy is to �rst exhibit a DFr-action and then to show that this action
factors through D1=2Det� .
The main step is the construction of a linear map

�� : TFr �! U�(h)Lag=C � U
�(h)Lag;

where U�(h)Lag is the sheaf of algebras U�(h)Lag = U�(h)
N

COLag and the tau-
tological vector bundle C is naturally considered as a subsheaf of commutative
algebras in U�(h)Lag.
Given � 2 TFr and s 2 W�, the action of � on s is de�ned as follows

(2.1) r� (s) = � . s+ � (�)
[
. s;

where
� �.s is the derivative of s with respect to the vector �eld �. Here we consider
s as a GLN -invariant function on Fr�H: Since � is a GLN -invariant vector
�eld hence �(s) remains GLN -invariant.

� � (�)[ . s is an application of a right H-invariant di¤erential operator to s.
In more details, the group H acts on itself by left translations, this yields
an anti-homomorphism of sheaves of algebras

(�)[ : U(h)Lag �! End (W�) ;

sending an element a 2 U(h) to a right H-invariant di¤erential operator on
H. The map (�)[ clearly factors through U�(h)Lag=C � U�(h)Lag.

Construction of the map � . it is su¢ cient to explain the construction on �bers. Fix
a point L 2 Lag. The �ber �L is a morphism of vector spaces

�L : TFrjL �! U�(h)=L � U�(h);
We recall that the �ber TFrjL can be naturally identi�ed with Homsym(L; V ) where
the later consists of all linear maps � : L! V so that !� = !(�(�); �) is a symmetric
bilinear form on L. The following proposition9 is simultaneously a characterization
and a construction of �L.

Proposition 1. There exists a unique map

�L : Hom
sym(L; V )! U�(h)=L � U�(h);

which satis�es the following two properties

9This is probably the main technical proposition in this paper.
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(1) (Linearity) �L(� + �
0) = �L(�) + �L(�

0) for every �; �0 2 Homsym(L; V ).
(2) (Formula) If !� is non-degenerate then �L(�) is given by the following

formula

(2.2) �L(�) =
1

2�

NP
i=1

�(ei)
2;

for �!e = (e1; ::; eN ) an orthonormal basis10 with respect to !�.

Proposition 2. The action (2.1) de�nes a DFr-action on the vector bundle W�.

Proposition 3. The DFr-action on W� induced from (2.1) factors through a
D1=2Det�-action.

2.3. Function spaces. In this subsection we show how to obtain various interest-
ing function spaces from W�.

2.3.1. Fundamental gerbe. We will not discuss to any depth the notion of a gerbe
in this paper. It is enough to our purposes to say that a gerbe on a variety X is a
sheaf of groupoids satisfying certain local triviality conditions. Roughly speaking,
a gerbe might be thought of as a categorical analogue of a line bundle. A particular
gerbe which plays a prominent role in our context is the gerbe of square roots [We]
of the canonical line bundle Det. This gerbe will be denoted by Det1=2. It is de�ned
as follows. For every open set U � Lag, the groupoid Det1=2(U) of sections over U
is

� An object � 2 Det1=2(U) is a pair (Det1=2; �) where Det1=2 is a line bundle
on U and � is an isomorphism

� : Det1=2
N
Det1=2

'�! DetjU :

� A morphism � : �! �0 is an isomorphism of line bundles

� : Det1=2
'�! Det1=20;

satisfying �
2 � � = �0 � �
2.
In the same manner we de�ne the dual gerbe Det�1=2 of square roots of the dual

line bundle Det�1.

2.3.2. Flat sections. Given an open set U � Lag we would like to consider the
space "�flat(U;W�)" of �at sections of W�. In order to do that we need to
linearize the connection. This can be formally done as follows. Choose an object
� = (Det1=2; �) 2 Det1=2(U). Since the line bundle Det1=2 is naturally a D�1=2Det� -
module, the tensor product Det1=2

N
OW� is a plain DU -module. The space of �at

section is de�ned by

H�
� = �flat(U;Det

1=2N
OW

�
jU )

, HomDU
(OU ; Det1=2

N
OW

�
jU ):

Heisenberg action. The (complex) Heisenberg group H acts on the �bers of W� by
right translations thus commuting with the D1=2Det� -action and hence it induces an
action of H on the space H�

�.

10As will be proved below, formula (2.2) does not depend on the choice of the basis �!e .
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2.4. The Weil D-module. The vector bundle W� consists of a mixture of al-
gebraic structure (projective connection) and analytic structure (the �bers of the
bundle W�). The main idea is to separate as much as possible between these two
structures. This is done as follows. The projective connection will encoded as an
(algebraic) D�1=2;�det -moduleM� such that the analytic space H�

� of "�at" sections
is realized as a solution space ofM� in an appropriate target module F .
In this section all spaces are algebraic.

2.4.1. Construction of the moduleM�. The strategy is to constructM� as a D�tot-
module and then to show that the D�tot-action factors through a D

�1=2;�
det -action.

De�ne
M� = D�tot=I�:

Here I� � D�tot is a sheaf of left ideals de�ned as follows

(2.3) I� = (c[; � + e�(�)[ : c 2 C; � 2 TFr):
where

� The element e�(�) is any lifting of �(�) to U(h)Lag.
� The elements c[ 2 D�tot and e�(�)[ are de�ned using the anti-linear homo-
morphism

(�)[ : U(h)Lag �! prLag�(D�tot) = D�Fr
N

C

�
U�(h)�

N
C[}] U

�(h)
�
;

sending an element a 2 U(h) to the right H-invariant di¤erential operator
a[ = 1
 (a
 1):

Remark 10. It is important to note here that the ideal I� is well de�ned and does
not depend on the choice of the lifting e� .
Proposition 4. The D�tot-action onM� factors through D�1=2;�det .

2.5. Solution spaces. We will use the superscripts (�)an and (�)1 to denote sheaves
of analytic and C1 type respectively.

2.5.1. Solution spaces of holomorphic type. Specify the following data

� Let j : U ,! Lagan be an open set in the analytic topology.
� Let � = (Det1=2; �) 2 Det1=2(U) be a square root of the determinant line
bundle Detan on U .

De�ne
Fan� (1=2; �) = j�

�
Det1=2

�
� L�;

The sheaf Fan� (1=2; �) is equipped with a natural action of D�1=2;�det . In the same
manner we de�ne Fan� (�1=2; �) for � 2 Det�1=2(U). There exists a natural pairing
map

Fan� (1=2; �)
N

O F
an
� (�1=2;��) �! j�OanU �OanV :

We de�ne the solution space

Han
� (�) = Sol(M�;Fan� (1=2; �)):

When �, � or � = �1=2 are clear from the context they will be omitted from the
notation.
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2.5.2. Solution spaces of C1 type. Fix a choice of a real structure on V . Specify
the following data

� Let � = (Det1=2; �) 2 Det1=2(Lag(R)) be a square root of the (complexi-
�ed) determinant line bundle on the manifold Lag(R).

� Assume the central weight � is pure imaginary, � 2 iR. Let L� = H(R)�ZH(R)

C� be the associated line bundle to the central character  �.

De�ne

F1� (1=2; �) = ex�
�
Det1=2 � L�

�
:

The sheaf F1� (1=2; �) is equipped with an action of D�1=2;�det . In the same manner
we de�ne F1� (�1=2; �) for � 2 Det�1=2(Lag(R)). There exists a natural pairing
map

(2.4) F1� (1=2; �)
N

O F
1
� (�1=2;��) �! ex�C1Lag(R):

We denote by H1
� (�) the solution space

H1
� (�) = Sol(M�;F1� (1=2; �)):

When � , � or � = �1=2 are clear from the context they will be omitted from the
notation.

2.6. Explicit formulas. The constructions given so far are rather abstract. It
might hold a certain pedagogical value if we write some explicit formulas. Assume
N = 1. We will show that under appropriate trivializations, the module M� is
equivalent to the honest D-module associated to the heat equation.
Choose coordinates V ' C2 = f(x; y)g such that ! becomes the standard sym-

plectic form ! = dx ^ dy: Consider the map

f : C� C2 �! Fr �H;

given by f(t; (x; y)) = (et; (x; y; 0)) where et = (1; t) 2 Fr. A direct computation
reveals that

f�M� = DC�C2=DC�C2(X;H);
where

H = @t �
1

2�

�
@y �

�

2
x
�2
;

X = @x �
�tx

2
+ t@y +

�y

2
:

Consider the map

g : C2 ! C� C2;
given by g(t; y) = (t; (0; y)). A direct computation reveals

N � := g�f�M� = DC2=DC2(@t �
1

2�
@2y);

which is the D-module associated with the heat di¤erential operator. Denote by h
the composition f � g : C2 �! Fr �H. Let U be the open set U = Im (prLag � f).
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Concretely, U is the the complement to the south pole of the projective line P1C. Let
� 2 Det1=2(U). On the level of solution spaces we have the following identi�cations.

Han = HomD1=2;�
det

(M�;Fan)(2.5)

'�! HomDC2
(h�M�; h�Fan)

'�! HomDC2
(N �;OanC2 );

where the last term in (2.5) is the solution space of the heat equation @t � 1
2�@

2
y .

2.7. The Heisenberg representation. The action of the Heisenberg Lie algebra
can be reconstructed from the algebraic structure of the moduleM�. More precisely
we have a map of algebras

�� : U(h)� �! EndD�
tot
(M�),

sending an element a 2 U(h) to the endomorphism �� (a) :M� �! M� de�ned
by right multiplication with the element 1
 1
 a 2 D�tot
(2.6) �� (a) (m) = m � (1
 1
 a):
Note that since the ideal I� is de�ned in terms of elements of the form 1
a
1,

formula (2.6) indeed yields an endomorphism. On the level of solution spaces the
in�nitesimal action of h =Lie(H) on Han=1 can be written in terms of ��. More
precisely, given an element � 2 h we have two actions

�� (�) : Han=1 �! Han=1;

d�� (�) : Han=1 �! Han=1;

which are de�ned as follows. Let ' 2 Han=1 = Sol
�
M�;Fan=1

�
be a vector in

the solution space. The �rst action is de�ned by composition �� (�)' = '��� (�) :
In order to de�ne the second action, it is enough to specify d�� (�)' at the point
1 2M�. We take

d�� (�)' : 1 7�! R�('(1));

where the last expression is taking the derivative of ' (1) with respect to the left
invariant vector �eld associated with �.

Lemma 3. for every � 2 h
�� (�) = d�� (�) :

Proof. The proof is obvious. �
2.8. Duality. In this subsection we state one of the main results of this paper
regarding the duality relation between the Weil D-modules M� and M��. This
duality is given in terms of the Verdier duality functor. Recall that in general we
have a functor

D : DCoh(D�;�det ) �! DCoh(D��;��det ).
In the case � = �1=2, it will be convenient to consider a twisted duality functoreD : DCoh(D�1=2;�det ) �! DCoh(D�1=2;��det ),

which is de�ned by eD(M) = pr�LagDet
N

O D(M):

Note that since Det is naturally a D�1Det� -module, therefore, tensoring with it gives
a functor from DCoh(D1=2;�det ) to DCoh(D�1=2;�det ).
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Theorem 12. The module M� is Cohen-Macaulay. Moreover, there exists a
canonical isomorphism eD(M�)

'�!M��[N ].

2.9. Equivariance structure. We consider M� as a coherent module over the
algebra D�tot. Recall that Dtot is associated with the G = GLN � Ga principle
bundle Fr � H ! Lag � V . Since the symplectic group Sp acts on the bundle
Fr �H and this action commutes with the action of the local symmetry group G,
the notion of Sp-equivariant object in the category Coh(D�tot) makes sense.

Proposition 5. The module M� is equipped with a natural Sp-equivariant struc-
ture.

3. Applications

In this section, several applications of the strong Stone-von Neumann property
are established. First application concerns the existence of a canonical pairing be-
tween various solution spaces. As a corollary, an a¢ rmative answer to a question of
Deligne is obtained. Second application is to the construction of the Weil represen-
tation of the real symplectic group, it will be shown that the strong S-vN property
directly implies the metaplectic sign.
In this section, it will be convenient to assume that (V; !) is de�ned over R,

namely V is a smooth scheme over R with
! : V � V �! A1R;

a skew symmetric morphism of schemes. As a consequence all associated spaces
and groups that we consider are smooth schemes over R.

3.1. Canonical pairings.

3.1.1. Canonical pairing between holomorphic solution spaces. Specify the following
data

� An analytic open set U � Lag (C)an such that HN (U;C) is non trivial.
� An analytic square root � = (Det1=2; �) 2 Det1=2(U).

Theorem 13. Given a non-trivial class 
 2 HN (U;C), there exists a natural non-
degenerate H (C)-invariant pairing

B
 : Han (�)�Han (��) �! C:

Concrete formulas. It might hold a certain pedagogical value to write the paring
B
 in concrete coordinates. For doing this, let us assume that N = 1. We choose
coordinates V ' C2 so that ! becomes the standard symplectic form ! = dx ^ dy.
The variety Lag (C) is identi�ed with the projective line P 1C. Consider the maps

f : C� � C2 �! Fr (C)�H (C) ;
g : C� � C �! C� � C2;
h = f � g : C� � C �! Fr (C)�H (C) ;

where f is given by f(t; x; y) = (et; (x; y; 0)) and g is given by g(t; y) = (t; (0; y)):
Using the map h we can pull-back the modules M�� to honest D-modules on
C� � C. We de�ne

N � = h�M�;

N�� = h�M��:
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A direct calculation reveals that

N � ' DC��C=DC��C
�
@t � 1

2�@
2
y

�
;

N�� ' DC��C=DC��C
�
@t +

1
2�@

2
y

�
:

That is, N � is the D-module associated to the Heat equation and N�� is as-
sociated to its transposed. On the level of solution spaces, the pull-back functor
induces isomorphisms

h� : Sol (M�;Fan (1=2; �)) '�! Sol(N �;OanC��C);

h� : Sol
�
M��;Fan(1=2;��

� '�! Sol(N��;OanC��C):

We would like to write the pairing B
 in terms of the concrete spaces

H� , Sol(N �;OanC��C);
H�� , Sol(N��;OanC��C)

For every pair of solutions

� 2 Sol (M�;Fan (1=2; �)) ;
' 2 Sol

�
M��;Fan (1=2;��)

�
;

we have

h� ('
 �(GM�)) = h�'
 h��(h�GM�):

By functoriality we have h�(GM�) = GN� , if we denote by e� and e' the pullbacks
h�� 2 H� and h�' 2 H�� respectively we can write

h� ('
 �(GM�)) = e'
 e�(GN�).

Let us compute the Green class GN� : A direct calculation reveals that DN � '
N��[1] therefore we have

GN� 2 R1HomDC��C
(OC��C;N��N

ON
�)

= H1(DR�(N��N
ON

�)):

A direct calculation reveals that GN� is represented by the following explicit
chain in DR1(N��N

ON �)

GN� = dy 
 1
 1� 1

2�
(dt
 @y 
 1� dt
 1
 @y) :

Let us �x a curve 
 : S1 �! C� � C representing a non-trivial element in
H1(C��C;C); for example we can take 
(t) = (t; 0). If we denote by r = e�(1) and
by s = e'(1) the corresponding holomorphic functions on C� � C, we can write

B
(r; s) =

Z



e'
 e�(GN�)

=

Z
t2S1

(@ys(t; 0) � r(t; 0)� s(t; 0)@yr(t; 0)) dt.
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3.1.2. Canonical pairing between C1 function spaces. Specify the following data

� A C1-square root � = (Det1=2; �) 2 Det1=2(Lag (R)).
� Assume that the central weight � is pure imaginary, � 2 iR.

Theorem 14. For every non-trivial class 
 2 HN (Lag (R) ;C), there exists a nat-
ural non-degenerate H (R)-invariant pairing

B
 : H1 (�)�H1 (��) �! C:

3.2. Deligne�s question. Deligne�s question concerns the following situation. As-
sume N = 1. Let 
 : S1 ! Lag (C) be a curve so that Lag (C) n Im(
) is a disjoint
union of two contractible open sets U+ and U�. Let us denote by Z� the closed
subsets Z� = U� [ Im 
 respectively. Choose objects �� 2 Det1=2(Z�) and an
isomorphism

� : �+j Im 


'�! ��j Im 
 :

Deligne�s question: Does there exists a canonical H (C)-invariant pairing

(3.1) B�;
 : Han
�+ (�)�Han

�� (��)! C.

We will formulate and prove a generalized variant of (3.1).
Specify the following data

� Open cover Lagan (C) = U+ [ U� .
� Objects �� 2 Det1=2(U�)
� Isomorphism

� : �+jU+\U�
'�! ��jU+\U� :

Assume HN (U+\U�;C) 6= 0 and let 
 2 HN (U+\U�;C) be a non trivial class.

Theorem 15. There exists a non-trivial H (C)-invariant paring

(3.2) B�;
 : Han
�+ (�)�Han

�� (��)! C:

3.2.1. The Heisenberg representation (analytic models). An important application
of (3.2) appears when the decomposition Lag = U+ [ U� is compatible with the
real structure on V . More precisely, assume U+ = U� and U+\U� is an homotopic
retract of Lag (R), hence

H� (U+ \ U�;C) = H� (Lag (R) ;C) :

Fix a non-trivial class 
 2 HN (Lag (R) ;C). In this particular situation (3.2)
implies the existence of an H (R)-invariant Hilbertian structure on Han

�+ (�), which
is obtained as follows. The Galois action de�nes an anti-complex isomorphism

(�) : Han
�+ (�)! Han

�� (��) :

We obtain an H (R)-invariant Hermitian structure

h�; �i�;
 : H
an
�+ (�)�Han

�+ (�)! C;

given by

h�; 'i�;
 = B
;�(�; ') =

Z



G (�; ') :
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Summary: This example establishes an Hilbertian model
�
��U+ ;H;H

�
U+

�
of

the Heisenberg representation consisting of a certain class ofH-holomorphic
vectors. Interestingly, a large variety of such models appears depending on
the choice of the open set U+. The larger U+ the smaller the model H�

U+
is.

3.3. The Weil representation over the reals. In this subsection we explain
how the strong S-vN property implies the existence of the Weil representation of
the real symplectic group. Our plan is to construct a unitary representation of
a double cover Mp of the real symplectic group Sp (R). First, we construct the
Hilbertian space H�. Second, we de�ne the double cover Mp and exhibit its action
on H�. Finally we show that this action is unitary.

3.3.1. Construction of the Hilbertian space. We need to specify the following data

� A square root � = (Det1=2; �) 2 Det1=2(Lag (R)):
� A non-trivial class 
 2 HN (Lag (R) ;C).
� Assume the central weight � is purely imaginary, that is � 2 iR.

We de�ne the vector space H� to be

H1 (�) = Sol(M�;F1 (�)):
Theorem 14 implies that there exists a canonical pairing

B
 : H1 (�)�H1 (��) �! C:

We have the following simple lemma

Lemma 4. The Galois action de�nes an anti-linear isomorphism

(3.3) � : H1 (�)
'�! H1 (��) ;

For every �; ' 2 H1 (�), we de�ne the Hermitian product h�; 'i
 to be

h�; 'i
 , B
(�; �('));

3.3.2. Construction of the metaplectic group. The metaplectic group Mp consists
of pairs (g; �1=2g ) where g is an element in Sp (R) and �1=2g is an isomorphism

��1=2g : Det1=2
'�! g�Det1=2;

satisfying

g�� �
�
��1=2g 
 ��1=2g

�
� ��1 = cang;

where cang is the canonical isomorphism cang : Det
'�! g�Det coming from the

natural Sp (R)-equivariance structure of Det. The group structure is given by

(g; �1=2g ) � (h; �1=2h ) = (gh; h��g � �h);

Forgetting the isomorphism �1=2g we obtain a coverMp �! SpR �! 1:The kernel
is the group consisting of isomorphisms

�1=2 : Det1=2
'�! Det1=2

satisfying � �
�
�1=2 
 �1=2

�
� ��1 = Id, hence it is isomorphic to Z2. Concluding,

Mp is a double cover of the group Sp (R).
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3.3.3. Construction of the metaplectic action. The group Mp naturally acts on the
vector space H� preserving the Hermitian product. The action is obtained using
the standard construction described in 1.5 using the following two simple facts

� The D�tot module F1 (�) is equipped with a natural Mp-equivariant struc-
ture. This fact principally follows from the de�nition of Mp.

� The D�tot moduleM� is equipped with a natural Mp-equivariant structure.
This is a concequence of the fact thatM� is already Sp (C)-equivariant.

As a result we obtain a map

� : Sol(M�;F1 (1=2; �)) �! p�LagSol(M�;F1 (1=2; �));

where pLag is the projection from Mp�Lag on Lag. The map � gives the required
action.

Proposition 6. The action � is unitary.

Proof. The Mp-invariance of the Hermitian product h�; �i
 is a consequence of the
following two simple statements.

� The homology class 
 2 HN (Lag (R) ;C) is �xed by Sp (R) :
� The Green class GM� 2 HN (DR�(M��N

OM�)) is �xed by the action
of the complex group Sp.

Concluding the proof. �

Appendix A. Proof of statements

A.1. Proofs for Section 2.

A.1.1. Proof of Lemma 2. In order to de�ne W� as an holomorphic vector bundle,
we have to exhibit a cover

Lag =
[
i

Ui;

and trivializations 'i :W�
jUi

'�! O
�
U � AN

�
with holomorphic transition isomor-

phisms
'ji = 'j � 'i : O

�
Ui \ Uj � AN

�
�! O

�
Ui \ Uj � AN

�
:

De�ning the cover. For every Lagrangian L 2 Lag, we consider the open set UL �
Lag consisting Lagrangian subspacesM such that L\M = 0. Clearly fULgL2Lag is
an open cover of Lag: For every M 2 UL, the �ber W�

jM can be naturally identi�ed
by restriction with O (L), this yields the trivialization

'L :W�
jUL

'�! O (UL � L) .

Note that if we choose in addition a basis of L then O (UL � L) can be further
identi�ed with O

�
UL � AN

�
but we will skip this additional step.

Computing the transition maps. Let L1; L2 2 Lag be a pair of Lagrangian sub-
spaces. Consider M 2 UL1 \ UL2 . We will proceed to compute�

'L2;L1
�
jM : O (L1)

'�! O (L2) :

The computation is based on the following general construction from linear al-
gebra.
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(1) Construction from Linear algebra. Given a triple of Lagrangian subspaces
L1; L2;M 2 Lag, such that

L1 \M = L2 \M = 0;

then there exists a linear map

RML1;L2 : L2 �! L1;

associated with this con�guration, where RML1;L2(l2) is de�ned as the
unique element in L1 such that

! (l2;m) = !
�
RML1;L2(l2);m

�
;

for every m 2M .
(2) Computation of the transition isomorphism. A direct computation reveals

that the transition isomorphism is given by

(A.1)
�
'L2;L1

�
jM [f ] (l2) =  �

�
1
2!
�
RML1;L2(l2); l2

��
f
�
RML1;L2(l2)

�
;

for f 2 O (L1). It is evident that (A.1) de�nes an holomorphic map

'L2;L1 : O (UL1 \ UL2 � L1)
'�! O (UL1 \ UL2 � L1) :

This concludes the proof of the lemma.

A.1.2. Proof of Proposition 1. Let us denote � = �L.
Independence of basis. First we will prove that formula (2.2) does not depend on
the choice of the orthonormal basis. Assume � 2 Homsym(L; V ) is non-degenerate
and choose a pair of orthonormal bases

�!e = (e1; e2; ::; eN ) ;
�!
f = (f1; f2; ::; fN ) :

Denote

e��!e (�) =
1

2�

NP
i=1

�(ei)
2;

e��!
f
(�) =

1

2�

NP
i=1

�(fi)
2;

where, both terms considered as vectors in U� (h). We will denote by ��!e (�) and
��!
f
(�) the corresponding elements in the quotient U� (h) =L � U� (h). It is easy to

verify that
[e��!e (�); l] = [e��!f (�); l] = � (l) ;

for every l 2 L, which implies that
��!
f
(�)� ��!e (�) 2 C � U� (h) =L � U� (h) :

We can assume that
�!
f = �!e � g for some g 2 O (L; !�) and denote the di¤erence

��!
f
(�)� ��!e (�) by �(g). We are left to show that �(g) = 0. The argument works as

follows. For every g 2 O (L; !�) we de�ned the scalar
�(g) = ��!e �g(�)� ��!e (�):

It is easy to verify that in fact we constructed an homomorphism of groups

� : O (L; !�) �! (C;+) ,
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However for the orthogonal group, there exits no non-trivial such homomorphisms,
hence �(g) = 0 for every g 2 O (L; !�).
Uniqueness of � . Uniqueness follows from the fact that every morphism � 2 Homsym (L; V )
can be written as a sum

� = �1 + �2;

of two non-degenerate morphisms �1; �2 2 Homsym (L; V ).
Existence of � . Let us �x some notations �rst. Let W = Homsym (L; V ) and let
W � � W the open set consisting of non-degenerate morphisms. Let us denote by
�� the morphism

�� :W � �! U� (h) =L � U� (h) ;
which, for every � 2W �, is given by the explicit formula

�� (�) =
1

2�

NP
i=1

�(ei)
2:

Our plan is to show that �� extends to a morphism

� :W �! U� (h) =L � U� (h) ;
which satis�es the linearity condition �

�
� + �0

�
= � (�) + �

�
�0
�
. As it turns out,

the existence of the extension is strongly tied with the linearity property. We will
need to consider one additional open set U �W ��W �. The set U consists of non-
degenerate pairs (�; �0) such that � + �0 is non-degenerate as well. Our argument
is based on the following technical statements

Lemma 5. For every
�
�; �0

�
2 U

(A.2) ���+�0 = ��� + �
�
�0 :

Granting the validity of (A.2) we can �nish the proof. Fix a functional

� : U� (h) =L � U� (h) �! A1,
and denote by ��� the composition

��� = � � �� :W � �! A1.
The morphism ��� extends to a regular morphism

��� :W �! P1:

(1) We will show that Im ��� in fact lies in A1. Denote by m :W ��W � �!W

the addition map m(�; �0) = � + �0. It is easy to show that m is smooth
and surjective. It is enough to show that

Im
�
m����

�
� A1;

The last statement follows from the fact that m���� = +
�
��� � ���

�
,

where + : A1 � A1 �! A1 is the addition morphism. This is true since
both m���� and +

�
��� � ���

�
are algebraic morphisms from W ��W � to P1

which, by (A.2) agree on the open set U , therefore the coincide everywhere.

Now Im
�
+
�
��� � ���

��
lies in A1 hence Im

�
m����

�
lies in A1 as well.

(2) Having shown that ��� extends to a regular morphism ��� : W �! A1 for
every functional � implies that, in fact, �� extends to a morphism

� :W ! U� (h) =L � U� (h) .
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(3) We are left to show that � satis�es linearity. Consider the multiplication
morphism m :W �W �!W . We would like to show that

(A.3) m�� = +(� ; �) :

This follows from the fact that both sides of (A.3) are algebraic mor-
phisms form W �W to U� (h) =L � U� (h) which coincide by (A.2) on an
open subvariety U �W �W hence they coincide everywhere.

(4) We are left to prove (A.2). Let
�
�; �0

�
2 U be a pair of non-degenerate

symmetric maps. Let �!e = (e1; ::; eN ) be an orthonormal basis with respect
to !� such that !�0 is diagonal in this basis, namely

!�0 =
NX
i=1

aie
�
i e
�
i .

then e0i =
1p
ai
; i = 1; ::; N form an orthonormal basis with respect to

!�0 . In addition

!�+�0 =
NX
i=1

(ai + 1) e
�
i e
�
i :

Let
�!
f = (f1; ::; fN ), where fi = 1p

ai+1
ei be an orthonormal basis with

respect to !�+�0 . We have

��
�
� + �0

�
=

1

2�

NX
i=1

�
� + �0

�
(fi)

2(A.4)

=
1

2�

NX
i=1

h
� (fi)

2
+ �0 (fi)

2
+ � (fi)�

0 (fi) + �
0 (fi)� (fi)

i
:

Now, explicit computation reveals

� (fi)
2
+ �0 (fi)

2
=

1

ai + 1
� (ei)

2
+

ai
ai + 1

�0 (e0i) ;

� (fi)�
0 (fi) =

ai
ai + 1

� (ei)
2
;

�0 (fi)� (fi) =
1

ai + 1
�0 (e0i)

2
:

Substituting in (A.4) we obtain

��
�
� + �0

�
=

1

2�

NX
i=1

h
� (ei)

2
+ �0 (e0i)

2
i

=
1

2�

NX
i=1

� (ei)
2
+
1

2�

NX
i=1

�0 (e0i)
2

= �� (�) + ��
�
�0
�
:

This concludes the argument.

Concluding the proof of the proposition.
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A.1.3. Proof of Proposition 2. Step 1. First, we have to show that r� (s) 2 W�

for every s 2 W�. Given a section s 2 W� we will show that

c[ .r� (s) = 0;
for every c 2 C. This follows from a direct computation

c[ .r� (s) = c[
�
� . s+ � (�)

[
. s
�

= [c[; �] . s+ [c[; � (�)
[
] . s

= �[�; c[] . s+ [c[; � (�)[] . s
= � (� . c)[ . s� � (c)[ . s+ [� (�) ; c][ . s
= � (� . c)[ . s� � (c)[ . s+ � (c)[ . s
= � (� . c)[ . s = 0.

Step 2. Second, we have to show that

(A.5) r[�;�0] =
�
r� ;r�0

�
;

for every �; �0 2 TFr. In order to do that, we will introduce an auxiliary Lie
algebroid.
The symplectic Lie algebroid. The group Sp acts on Lag. Let spLag =

sp
COLag. (see Example 5) be the Lie algebroid associated with this action. Since
Sp acts on the frame bundle Fr there exists a surjective morphism of Lie algebroids

� : spLag �! TFr:
The morphism � is determined by its values on the constant Lie subalgebra sp �
spLag on which it is given by

�(�) = ��#:
Here �# stands for the GLN -invariant vector �eld on Fr associated to the element
�. The main reason we consider spLag is because the map � admits a simpler form
when lifted to the level of spLag.

Proposition 7. There exists a unique morphism

(A.6) e� : spLag ! U� (h)Lag ,
satisfying

(1) Lifting.
p � e� = � ��;

where p is the natural projection from U� (h)Lag on U� (h)Lag =C �U� (h)Lag.
(2) Formula. For every non-degenerate11 � 2 sp, the element e� (�) is given by

the the following explicit formula

(A.7) e� (�) = � 1

2�

2NX
i=1

� (ei)
2 ,

where �!e = (e1; ::; e2N ) is an orthonormal basis with respect to the non-
degenerate symmetric form !� (u; v) = ! (� (u) ; v).

11Here non-degenerate means that the symmetric form !�(u; v) = !(�(u); v) on V is non-
degenerate.
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Proof. The argument is very similar to the one in the proof of Proposition 1,
therefore we omit it. We explain only the lifting property.
It is su¢ cient to prove the lifting property on �bers. Fix a point L 2 Lag and

denote by e� and � the �bers e�L and �L respectively. It is su¢ cient to consider
non-degenerate element � 2 sp such that !� restricted to L is non-degenerate. For
such an element we will show

(A.8) p (e� (�)) = �
�
�jL
�
:

Let �!e = (e1; ::; eN ) be an orthonormal basis of L with respect to !�jL. The
basis �!e can be completed to an orthonormal basis of V with respect to !�. Let
us denote the remaining elements by

�!
f = (f1; ::; fN ). In order to prove (A.8) it is

enough to show
� (fi) 2 L:

for every fi 2
�!
f . But this is evident since 0 = !�(fi; ej) = !(� (fi) ; ei) for every

ei 2 �!e and using the fact that �!e is a basis of L and L is Lagrangian.
This concludes the proof of the lifting property. �

Veri�cation of formula (A.5). It is enough to verify (A.5) for elements �; �0 of the
form

� = �(�) ;

�0 = �(�0) ;

where �; �0 2 sp are non-degenerate. In this situation, the right side of (A.5)
becomes �

r� ;r�0
�
(s) =

�
�; �0

�
+ [� (�)

[
; �
�
�0
�[
]

=
�
�; �0

�
+ [e� (�)[ ;e� (�0)[]:

Now, we havehe� (�)[ ;e� (�0)[i = [e� (�0) ;e� (�)][ = e� ([�; �0])[
= � (� ([�; �0]))

[
= � ([� (�) ;�(�0)])

[

= �
�
[�; �0]

�[
:

All the steps in the above computation are direct therefore we omit any further
explanation. Concluding we obtained�

r� ;r�0
�
=
�
�; �0

�
+ �

��
�; �0

��[
= r[�;�0].

This concludes the proof of the proposition.

A.1.4. Proof of Proposition 3. Recall that we have a surjective morphism of Lie
algebroids

� : TFr � TDet� ;
sending the vertical subalgebra T vFr = Hom(C;C) onto the vertical subalgebra
T vDet� = Hom(^NC;^NC) and it is given by

� (�) = Tr (�) =

NX
i=1

Id ^ :: ^
i

� ^ :: ^ Id:

for any � 2 Hom(C;C). From this description we can deduce the following
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� The kernel of the map � consists of � 2 Hom(C;C) such that Tr (�) = 0:
� The morphism � sends the canonical section Id 2 Hom(C;C) to N � Id 2
Hom

�
^NL;^NL

�
.

In order to show that the DFr-action factors through a D1=2Det� -action it is enough
to show that the connection r factors through TDet� and OId = �N

2 :

Factorization through TDet� . It is enough to show that
�L (�) = 0;

for every � 2 Hom (L;L) such that Tr (�) = 0. Fix such � and choose, in addition,
a non-degenerate 
 2 Homsym (L; V ). We have

��L (�) = �L (
 + �)� �L (
)(A.9)

=
1

2�

NX
i=1

(
 + �) (ei)
2 � 1

2�

NX
i=1


 (ei)
2

=
1

2�

NX
i=1


 (ei)� (ei) =
1

2�

NX
i=1

[
 (ei) ; � (ei)]

=
�

2�

NX
i=1

! (
 (ei) ; � (ei)) =
1

2

NX
i=1

!
 (ei; � (ei))

=
1

2
Tr (�) = 0:

where the �rst equality is by the linearity property of �L and all the other equalities
are standard manipulations in U� (h).
Veri�cation that OId = �N

2 . The fact that rId = �
N
2 is a direct consequence

of (A.9) if we substitute � = Id.
This concludes the proof of the proposition.

A.1.5. Proof of Theorem 12. We de�ne an auxiliary Lie algebroid.
Auxiliary Lie algebroid. Denote by T the following Lie algebroid on Lag�V

T = spLag � TH ,
and by D the corresponding universal enveloping algebra, D = U (T ). The action

of Sp on the frame bundle Fr induces a surjective morphism of Lie algebroids
" : spLag � TFr, hence there exists a morphism of Lie algebroids T �! TFr�H ,
which in turns yields a surjective homomorphism of D-algebras

� : D �! Dtot,
�� : D� �! D�tot:

Using �� we can consider the moduleM� as a D�-module, namely as an object
in DCoh (D�). The advantage of doing that is that in this category we can e¤ectively
construct a free resolution ofM�.
It will be convenient to consider the pushforward prLag� (M�) which is a sheaf

of modules over prLag� (D�) living on the variety Lag. Since V is a¢ ne, no infor-
mation is lost in this step. We will continue to denote byM� and D� the sheaves
prLag� (M�) and prLag� (D�) respectively.
Resolution of M�. We will construct a "Koszul" like resolution of M�. In

order to do that we need to de�ne an appropriate Lie subalgebroid of D�.



THE WEIL REPRESENTATION OVER THE COMPLEX NUMBERS 49

(1) We consider the sheaf T �=spLagnC; with the following Lie algebroid struc-
ture
� The commutator of two elements (�; c); (�0; c0) 2 spLag nC is given by�

(�; c); (�0; c0)
�
=
�
[�; �0]; "� . c

0 � "�0 . c
�
;

� The standard morphism � : spLag n C �! TanLag is de�ned by
�(�; c) = ��#, where �# is the vector �eld associated to the element
� via the Sp-action on Lag.

We have an injective morphism of Lie algebras r� : T �,! D� which is
determined by

r� (c) = c[;

r� (�) = � + e�� (�)[ ;
where e�� is the map de�ned in (A.6). Here we intentionally remember

the superscript (�)�.
(2) Let P�;� = Koz� (D�; T �; r�) be the complex of free D�-modules given

by P�;�n = D�
N

O
Vn T � for n = 0; :::;M = rank(T �), with di¤erential

� : P�;�n�1 ! P�;�n given by

� (a
 @0 ^ :: ^ @n) =
X
i

(�1)i a � r� (@i)
 @0 ^ ::b@i:: ^ @n
+
X
i<j

(�1)i+j a
 [@i; @j ] ^ @0 ^ ::b@i:: b@j :: ^ @n:
The complex P�;� yields a free resolution ofM�, that is we have a quasi-

isomorphism P�;� q:i! M�. The proof of the last assertion is standard yet
tedious and therefore it is omitted.

Computing the Verdier dual of M�. We would like to show

D (M�) =M��N
ODet

�1:

We can write

D (M�) = HomD�

�
P�;�;D�;


�top
�
[rank (T )� 1]

= HomD�

�
P�;�;D�;


�top
�
[M +N ];

We will compute HomD�

�
P�;�;D�;
�top

�
[M +N ] in two stages.

(1) First, we compute

Q�;� = HomD� (P�;�;D�) [M +N ]:

The complex Q�;� is a "de-Rham" like complex of right D�-modules
given by Q�;n =

Vn T �;�NO D� for n = �N �M; ::;�N; with di¤erential
d : Q�;n�1 ! Q�;n given by

(A.10) d (! 
 a) = d! 
 a+
P
i

@�i ^ ! 
 r� (@i) � a:
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Here (@0; ::; @M ) is an arbitrary local basis of T � and (@�0 ; ::; @�M ) is the
corresponding dual basis12 and d! means

d! (@0; ::; @n) =
P
i

(�1)i �@i . !
�
@0; :b@i:; @n�

+
P
i<j

(�1)i+j !
�
[@i; @j ]; @0; :b@i:b@j :; @n� ;

where � : T � ! TanLag is the standard map.
(2) Second, compute the tensor product

Q�;�
N

O D
�;
�top ' Q�;�

N
O
�
T �^top

N
O C

�^N� ;
which translates the right D�-action to a left D�-action. We have to

show
Q�;�

N
O D

�;
�top q:i�!M��N
ODet

�1[N ]:

In fact, we will exhibit a quasi-isomorphism

' : Q�;�
N

O D
�;
�top q:i�! Koz�

�
D��; T �; r��

�N
ODet

�1[N ]:

We will use the following identi�cation of the dualizing module D�;
�top

with

D�
N

O

�
sp^topLag

N
O C

^NN
O C

�^N
�
' D�

N
O
�
T �^M

N
O C

�^N� :
For n = �M �N; ::::;�N , the morphism

'n :
VM+N+n T �;�

N
O D

�N
O
�
T �^M

N
O C

�^N� �! D��
N

O T
�^�N�nN

O C
�^N;

is determined by '�n (! 
 1
 �
 s) = 1 
 �� (!) 
 s, where � is the
standard contraction operation. The proof that ' yields a morphism of
complexes is by direct computation.

(3) As a conclusion, we obtained that

D (M�)
q:i�! Koz�

�
D��; T �; r��

�N
ODet

�1[N ];

which is quasi-isomorphic toM��N
ODet

�1[N ].

This concludes the proof of the theorem.

A.1.6. Proof of proposition 5. Recall

M� = D�tot=I�,

where I� � D�tot is a sheaf of left ideals generated by elements of the form c#

for c 2 C and � + �(�)[ for � 2 TFr. It is enough to show that the ideal I� is
Sp-invariant, namely g(I�) � I� for every g 2 Sp. We show this separately for the
two kind of generators.

(1) Given elements of the form c[ we have

g(c[) =
�
g
�
c � g�1

��[
;

which is clearly an element of the form d[ for some d 2 C.

12It is a standard argument showing that formula (A.10) does not depend on the choice of the
basis (@0; ::; @M ).
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(2) We are left to show that g(� + �(�)[) 2 I�. It is enough to show that the
map

� : TFr �! U�(h)Lag=C � U
�(h)Lag;

commutes with the Sp-action on both sides. Fix a point L 2 Lag. We show

�(g(�))jL = g(�(�))jL;

for every � 2 TFrjg�1L: Recall TFrjL is naturally identi�ed with Homsym(L; V ).
Let � 2 TFrjg�1L = Homsym(g�1L; V ). We can assume in addition that � is
non-degenerate since any other element in Homsym(g�1L; V ) can be written
as a sum of non-degenerate ones. We have

�(g(�))jL = �L(g(�)jL) =
1

2�

NP
i=1

g(�)jL(ei)
2;

where �!e = (e1; ::; eN ) is an orthonormal basis with respect to !g(�). Now
g(�)jL is given by

g(�)jL : L
g�1�! g�1L

��! V
g�! V:

Hence

�(g(�))jL =
1

2�

NP
i=1

g
�
�(g�1ei)

�2
=
1

2�

NP
i=1

g (�(fi))
2
;

where
�!
f = g�1�!e is an orthonormal basis of g�1L with respect to !� .

Finally
1

2�

NP
i=1

g (�(fi))
2
= g(�(�))jL;

This concludes the proof of the proposition.

A.2. Proofs for Section 3.

A.2.1. Proof of Theorem 13. Let us denote by X = Lag � V . Recall

Han (�) = Sol (M�;Fan(1=2; �)) ;
Han (��) = Sol

�
M��;Fan(1=2;��)

�
:

We have

M�� ' eD(M�)[�N ]
' pr�LagDet

N
O DM

�[�N ]

which implies

Han (��) = RNHomD��
det

�
pr�LagDet

N
O DM

�;Fan(1=2;��)
�

= RNHomD��
det

�
DM�; pr�LagDet

�1N
O F

an(1=2;��)
�

= RNHomD��
det
(DM�;Fan(�1=2;��)) ;

The pairing is now evident. Given � 2 Han (�) and ' 2 Han (��) we have

'
 � 2 RNHomDX
(DM�N

OM
�;Fan(�1=2;��)

N
O F

an(1=2; �))

m�! RNHomDX

�
DM�N

OM
�; j�OanU �OanV (C)

�
;
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where the map m : Fan(�1=2;��)
N

O Fan(1=2; �) ! j�OanU � OanV is the canon-
ical pairing. Applying m � ('
 �) to the Green class GM we obtain an honest
cohomology class

m � '
 �(GM) 2 HN (U � V;C) = HN (U;C):

We de�ne
B
(�; ') = hm � '
 �(GM); 
i ;

where h�; �i is the pairing between homology and cohomology. We are left to show
that B
 is Heisenberg invariant. It is enough to show that

B
(d�
� (�) �; ') +B
(�; d�

� (�)') = 0,

for every � 2 h = Lie(H). Using Lemma 3 we have

B
(d�
� (�) �; ') +B
(�; d�

� (�)')

= B
(�
� (�) �; ') +B
(�;�

� (�)'; �)

= h'
 �((�� (�)
 1 + 1
�� (�))GM); 
i :
Now it is evident that

(�� (�)
 1 + 1
�� (�))GM = 0;

which concludes the argument.

A.2.2. Proof of Theorem 14. Let us denote by X = Lag � V . We repeat step by
step the proof of Theorem 13. Recall

H1 (�) = Sol (M�;F1(1=2; �)) ;
H1 (��) = Sol

�
M��;F1(1=2;��)

�
:

Since

M�� ' eD(M�)[�N ]
' pr�LagDet

N
O DM

�[�N ]
we can write

H1 (��) = RNHomD��
det

�
pr�LagDet

N
O DM

�;F1(1=2;��)
�

= RNHomD��
det

�
DM�; pr�LagDet

�1N
O F

1(1=2;��)
�

= RNHomD��
det
(DM�;F1(�1=2;��)) ;

Given � 2 H1 (�) and ' 2 H1 (��) we have

'
 � 2 RNHomDX
(DM�N

OM
�;F1(�1=2;��)

N
O F

1(1=2; �))

m�! RNHomDX

�
DM�N

OM
�; ex�C1Lag(R)

�
;

where the map m : F1(�1=2;��)
N

O F1(1=2; �) ! ex�C1Lag(R) is the pairing
map (2.4). Applying m � ('
 �) to the Green class GM we obtain an honest
cohomology class

m � '
 �(GM) 2 HN (Lag (R)� V (R) ;C) = HN (Lag (R) ;C):

We de�ne
B
('; �) = hm � '
 �(GM); 
i ;
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where h�; �i is the pairing between homology and cohomology. The Heisenberg
invariance is shown using the same argument as in the proof of Theorem 13. The
proof is concluded.

A.2.3. Proof of Theorem 15. Let us denote by X = Lag � V . Recall �� =�
Det

1=2
� ; ��

�
2 Der1=2 (U�) and we have an isomorphism of square roots

� : �+jU+\U�
'�! ��jU+\U� :

Write

Han
�+ (�) = Sol (M�;Fan�+(1=2; �)) ;

Han
�� (��) = Sol

�
M��;Fan��(1=2;��)

�
:

Since

M�� ' eD(M�)[�N ]
' pr�LagDet

N
O DM

�[�N ];

we can write Han
�� (��) as follows

Han
�� (��) = RNHomD��

det

�
pr�LagDet

N
O DM

�;Fan��(1=2;��)
�

= RNHomD��
det

�
DM�; pr�LagDet

�1N
O F

an
��(1=2;��)

�
= RNHomD��

det

�
DM�;Fane��(�1=2;��)

�
where e�� is the dual of ��. Given � 2 Han

�+ (�) and ' 2 Han
�� (��), we have

'
 � 2 RNHomDX

�
DM�N

OM
�;Fane��(�1=2;��)

N
O F

an
�+(1=2; �)

�
m�! RNHomDX

�
DM�N

OM
�; j�OanU+\U� �O

an
V (C)

�
;

where the map

m : Fan(�1=2;��)
N

O F
an(1=2; �)! j�OanU+\U� �O

an
V

is the canonical pairing and we used the isomorphism � in order to identify e��
with the dual of �+ on the intersection U+ \ U�.
Applying m � ('
 �) to the Green class GM we obtain an honest cohomology

class

m � '
 �(GM) 2 HN (U+ \ U� � V;C) = HN (U+ \ U�;C):

We de�ne

B
(�; ') = hm � '
 �(GM); 
i ;

where h�; �i is the pairing between homology and cohomology. The fact that B
 is
H (C)-invariant is proved in the same manner as for the proof of Theorem 13.
which concludes the proof of the theorem.
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