M381C Practice for the final

1. Let $f \in L^{1}([0,1])$. Prove that

$$
\lim _{p \rightarrow 0}\left(\int_{0}^{1}|f|^{p} d m\right)^{1 / p}=\exp \int_{0}^{1} \log |f| d m
$$

where, by definition, $\exp (-\infty)=0$. To simplify the problem, you may assume $\log |f| \in$ $L^{1}([0,1])$. Hint: rewrite the left hand side in a form to which you can apply L'Hopital's rule.
2. Let ϕ be a differentiable Lipschitz function on \mathbb{R}. If f is integrable on $[a, b]$ show that the function $\Psi(t)$ defined by

$$
\Psi(t)=\int_{a}^{b} \phi(t x) f(x) d x
$$

is differentiable.
3. Suppose $E \subset \mathbb{R}$ is measurable and $E=E+\frac{1}{n}$ for every natural number $n \geq 1$. Show that either $m(E)=0$ or $m\left(E^{c}\right)=0$.
Hint: Fix a number N and let $F(x)=m(E \cap[N, x])$ (for $x>N)$. Show that

$$
F(x+\epsilon)-F(x-\epsilon)=F(y+\epsilon)-F(y-\epsilon)
$$

whenever $N+\epsilon<x<y$. What does this imply about $F^{\prime}(x)$? What does the Lebesgue Differentiation Theorem applied to χ_{E} say about F^{\prime} ? (This exercise can be used to show that if $G \subset \mathbb{R}$ is a proper subgroup then $m(G)=0$).
4. Let $f \in L^{1}([0,1])$. What is

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \int_{0}^{1} \log \left(1+e^{n f(x)}\right) d x ?
$$

5. Compute

$$
\lim _{n \rightarrow \infty} \int_{0}^{n} \frac{\sin (x)}{x} d x
$$

Hint: Use Fubini's Theorem and the relation $1 / x=\int_{0}^{\infty} e^{-x t} d t$ for $x>0$.
6. State and prove Egoroff's Theorem.
7. Let $T:[0,1] \rightarrow[0,1]$ be an ergodic measure-preserving Borel transformation. This means that $m\left(T^{-1}(E)\right)=m(E)$ for any Borel $E \subset[0,1]$ and if $f \in L^{2}([0,1])$ satisfies $f \circ T=f$ then f is constant a.e. Let $\Omega=\left\{f \circ T-f+c: f \in L^{\infty}([0,1]), c \in \mathbb{C}\right\}$.
(a) Show Ω is dense in $L^{2}([0,1])$. Hint: because Ω is a subspace, it suffices to show that if $v \in L^{2}([0,1])$ is orthogonal to every element of Ω then $v=0$.
(b) Show that for every $f \in L^{2}([0,1])$ if f_{n} is the function

$$
f_{n}=\frac{1}{n+1} \sum_{i=0}^{n} f \circ T^{i}
$$

then $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges in $L^{2}([0,1])$ to the constant $\int_{0}^{1} f d m$. Hint: first show this is true if $f \in \Omega$. (This is known as von Neumann's mean ergodic theorem).
8. Recall that outer measure is defined on \mathbb{R} by $m^{*}(E)=\inf \sum_{i=1}^{n} m\left(I_{i}\right)$ where the infimum is over all collections $\left\{I_{i}\right\}_{i=1}^{n}$ of intervals that cover E and $n \in \mathbb{N} \cup\{\infty\}$. From this definition, prove that outer measure is sub-additive. That is: show $m^{*}\left(\cup_{i} E_{i}\right) \leq \sum_{i} m^{*}\left(E_{i}\right)$ for any $E_{1}, E_{2}, \ldots \subset \mathbb{R}$.
9. Let μ be a finite Borel measure on $[0,1]$. Define

$$
f(x)=\mu([0, x)) .
$$

Prove:

(a) μ is absolutely continuous to Lebesgue measure if and only if f is absolutely continuous.
(b) μ is singular to Lebesgue measure if and only if $f^{\prime}=0$ a.e.
10. Find a closed subset C of $\ell^{2}(\mathbb{N})$ that does not have an element with smallest norm. In other words there does not exist $v \in C$ with $\|v\|=\inf \{\|w\|: w \in C\}$.
11. Let C be the set of all $x \in \ell^{2}(\mathbb{N})$ such that $\left|x_{i}\right| \leq 1 / i$ for all i. Show that C is compact. On the other hand, if D is the set of all $x \in \ell^{2}(\mathbb{N})$ with $\left|x_{i}\right| \leq 1$ then D is noncompact. Why?
12. Define a measure on the unit sphere S^{n-1} in \mathbb{R}^{n} as follows. For $E \subset S^{n-1}$, let \bar{E} be the set of all $x \in \mathbb{R}^{n}$ such that $|x| \leq 1$ and if $x \neq 0$ then $\frac{x}{|x|} \in E$. Define $\sigma(E):=m(\bar{E}) n$. Show that this defines a measure, denoted by σ, on S^{n-1}. Moreover prove that for any measurable $X \subset \mathbb{R}^{n}$,

$$
m(X)=\int_{S^{n-1}} \int_{0}^{\infty} \chi_{X}(r v) r^{n-1} d m(r) d \sigma(v)
$$

Hint: first show that the formula holds whenever there is an open set $A \subset S^{n-1}$ and radii $r_{1}<r_{2}$ such that

$$
X=\left\{r v: r_{1}<r<r_{2}, v \in A\right\} .
$$

13. If μ and ν are signed measures on \mathbb{R} then we define their convolution $\mu * \nu$ in the following way. For any set $E \subset \mathbb{R}$, let $E_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x+y \in E\right\}$. Then define

$$
\mu * \nu(E):=\mu \times \nu\left(E_{2}\right) .
$$

We say a measure μ is purely atomic if there is a countable set $C \subset \mathbb{R}$ such that $\mu(\mathbb{R}-C)=0$. We say μ is continuous if $\mu(\{x\})=0$ for every $x \in \mathbb{R}$. Prove:
(a) if μ, ν are purely atomic then $\mu * \nu$ is purely atomic
(b) if μ is continuous then $\mu * \nu$ is continuous
(c) if $\mu \ll m$ then $\mu * \nu \ll m$.
(d) Are there measures μ, ν that are singular to Lebesgue measure such that $\mu * \nu \ll$ m ?
14. Let m denote Lebesgue measure on $[0,1]$ and c denote counting measure on $[0,1]$. In other words, $c(E)=|E|$, the cardinality of E. Let $\Delta=\{(x, x): x \in[0,1]\} \subset[0,1]^{2}$ denote the diagonal. Compute the integrals

$$
\iint \chi_{\Delta}(x, y) d m(x) d c(y)
$$

and

$$
\iint \chi_{\Delta}(x, y) d c(x) d m(y)
$$

Note they are not equal. Does this violate Fubini's Theorem? Does it violate Tonelli's Theorem? If not, why?
15. Identify the circle \mathbb{T} with $[-\pi, \pi)$. Define the Fourier coefficents of $f \in \mathbb{L}^{1}(\mathbb{T})$ by

$$
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i x n} d x
$$

Recall that f is odd if $f(x)=-f(-x)$ and it is even if $f(x)=f(-x)$.
(a) Show that f is odd if and only if $\hat{f}(n)=-\hat{f}(-n)$ for all n.
(b) Show that f is even if and only if $\hat{f}(n)=\hat{f}(-n)$ for all n.
16. Suppose $f \in L^{1}(\mathbb{T})$ and f is continuous at x. Also suppose that

$$
\sum_{n=1}^{\infty} \hat{f}(n) e^{i n x}
$$

converges at x. Show that

$$
f(x)=\sum_{n=1}^{\infty} \hat{f}(n) e^{i n x}
$$

Hint: recall that the Fejér kernels F_{N} form an approximation to the identity.

