
Name M381C Final Exam
Instructions: Do as many problems as you can in 3 hours. No notes, books, googling,
etc. Complete solutions (except for minor flaws) to 4 problems will be considered a good
performance.
Please place your final under my office door (RLM 9.156) by Thurs Dec 11 3pm!

1. Suppose f is absolutely continuous on [0, 1]. Recall that V (x) := V [f ; 0, x] is the total
variation of f on [0, x]. Show that V (x) is also absolutely continuous.

Solution. Let ε > 0. Because f is absolutely continuous there exists δ > 0 such
that if I1, I2, . . . is any collection of pairwise nonoverlapping intervals Ii = [ai, bi] with∑

im(Ii) < δ then
∑

i |f(bi)− f(ai)| < ε.

We claim that it is also true that
∑

i |V (bi)− V (ai)| < 2ε. Recall that V (bi)− V (ai) =
|V (bi)− V (ai)| is the total variation of f in [ai, bi]. So

V (bi)− V (ai) = sup{
n∑

j=1

|f(xi,j+1)− f(xi,j)| : ai = xi,1 < xi,2 < . . . < xi,n = bi}.

So for every i there exist pairwise nonoverlapping intervals Iij ⊂ Ii with V (bi)−V (a) ≤
ε/2i +

∑
j |f(di,j)− f(ci,j)| where Iij = [cij, dij]. Therefore,∑

i

|V (bi)− V (ai)| ≤ ε+
∑
ij

|f(di,j)− f(ci,j)| ≤ 2ε

where the last inequality occurs because of the choice of δ and the fact that
∑

ij m(Iij) <
δ.

Alternative solution. Because f is absolutely continuous, f(b)− f(a) =
∫ b

a
f ′(x) dx

for any a < b. So V (x) ≤
∫ x

0
|f ′(t)| dt. Absolute continuity of the Lebesgue integral as

a set function now implies absolutely continuous of V (since f ′ ∈ L1).

2. A subset Φ ⊂ L1([0, 1]) is uniformly integrable if for every ε > 0 there exists a δ > 0
such that ∫

E

|f | dm < ε

whenever f ∈ Φ and m(E) < δ. Suppose that {fn}∞n=1 ⊂ Φ, f ∈ L1[0, 1] and fn → f
pointwise a.e. and |f(x)| <∞ for a.e. x. Prove that

lim
n→∞

∫ 1

0

|fn − f | dm = 0.

Solution. Let ε > 0. Let δ > 0 be as in the statement. Because the integral is
absolutely continuous we may assume that δ > 0 is small enough so that if E ⊂ [0, 1]
is any set with m(E) < δ then

∫
E
|f | dm < ε. By Egorov’s Theorem, there exists a set

X ⊂ [0, 1] such that m(X) > 1− δ and fn → f uniformly on X. It follows that

lim sup
n→∞

∫ 1

0

|fn − f | dm ≤ lim sup
n→∞

∫
X

|fn − f | dm+

∫
Xc

|fn − f | dm

≤ lim sup
n→∞

∫
Xc

|fn|+ |f | dm ≤ 2ε.

Since ε > 0 is arbitrary, this implies the statement.



3. Let {µn}∞n=1 be a sequence of positive Borel measures on Rk. Define

µ(E) :=
∞∑
n=1

µn(E).

Observe that µ is a Borel measure.

(a) If every µn is absolutely continuous to Lebesgue measure, is µ necessarily abso-
lutely continuous to Lebesgue measure?

(b) If every µn is singular to Lebesgue measure, is µ necessarily singular to Lebesgue
measure?

Solution. (a) Let X ⊂ Rk be a set with Lebesgue measure zero. Since µn(X) = 0 for
all n, we must have µ(X) = 0. So µ is absolutely continuous to Lebesgue.

(b) Assume each µn is singular to Lebesgue measure. Let En ⊂ Rk be a subset with
m(En) = 0 and µn(Ec

n) = 0. Observe that µ(∩nEc
n) = 0. Also (∩nE

c
n)c = ∪nEn has

Lebesgue measure zero. So µ is singular with respect to Lebesgue.

4. If µ and ν are real-valued signed measures on R then we define their convolution µ ∗ ν
in the following way. For any set E ⊂ R, let E2 = {(x, y) ∈ R2 : x + y ∈ E}. Then
define

µ ∗ ν(E) := µ× ν(E2).

The norm of a signed measure is ‖µ‖ = |µ|(R), its total variation. Show that ‖µ ∗ ν‖ ≤
‖µ‖‖ν‖.
Solution. We first consider the case in which µ, ν are positive measures. Then

µ ∗ ν(R) = µ× ν(R2) = µ(R)ν(R).

So this proves the case when µ, ν are positive. For the general case, we may by the
Hahn decomposition theorem write µ = µ1 − µ2 and ν = ν1 − ν2 where µ1, µ2 are
mutually singular positive measures and ν1, ν2 are mutually singular positive measures.
Then

µ ∗ ν = µ1 ∗ ν1 − µ2 ∗ ν1 − µ1 ∗ ν2 + µ2 ∗ ν2.

So
|µ ∗ ν| ≤ µ1 ∗ ν1 + µ2 ∗ ν1 + µ1 ∗ ν2 + µ2 ∗ ν2.

Because |µ| = µ1 + µ2 and |ν| = ν1 + ν2 we have shown |µ ∗ ν| ≤ |µ| ∗ |ν|. Thus
|µ ∗ ν|(R) ≤ |µ| ∗ |ν|(R) = |µ|(R)|ν|(R). This implies the statement.

5. Let f be a left-continuous nondecreasing nonnegative function on [0, 1]. Left-continuous
means that limh↘0 f(x−h) = f(x) for any x. Show that there is a Borel measure µ on
[0, 1) such that

µ([0, x)) = f(x)− f(0)

for any x ∈ [0, 1]. Hint: apply Carathéodory’s Theorem. (We discussed this in class not
long ago. However, I’d like you to show the details; for example, by justifying carefully
why you can use Carathéodory’s Theorem).



Solution. Let A be the collection of all finite unions of intervals of the form [a, b).
Observe that A is an algebra (it is closed under finite unions, finite intersections and
complementation). Define µ on A by the formula

µ([a1, b1) ∪ [a2, b2) ∪ · · · ∪ [an, bm)) =
∑
i

f(bi)− f(ai)

where the intervals above are disjoint. We claim that µ is countably additive in the sense
that if E1, E2, . . . ∈ A and ∪iEi ∈ A then µ(∪iEi) =

∑
i µ(Ei). By finite additivity,

it suffices to prove this in the special case in which ∪iEi = [a, b) for some a < b and
Ei = [ai, bi) for some ai < bi.

We say that a number L is a nontrivial limit point of the bi’s if there is a sequence
{ij}∞j=1 that is not eventually constant such that L = limj→∞ bij. Observe that the
nontrivial limit points of the bi’s are discrete. This is because if L is such a limit point
then there must exist i such that ai = L (there does not have to exist i such that
bi = L). So we may let {ci}∞i=1 denote the nontrivial limit points with c1 < c2 < . . ..
Also note that since {Ei} is an infinite collection, nontrivial limit points exist, but
there might only be finitely many. To keep the notation simple, I will assume there are
infinitely many limit points, although the proof works in the finite case too.

We reindex the Ei’s as Eij’s (with 0 ≤ i < ∞, 1 ≤ j < ∞) satisfying Eij = [aij, bij) ⊂
[ci, ci+1), bij = ai,j+1, bij → ci as j → ∞ and ai1 = ci−1 where, for simplicity, c0 = a.
Then

∞∑
i=0

∞∑
j=1

µ(Eij) =
∞∑
i=0

∞∑
j=1

f(bij)− f(aij) =

=
∞∑
i=0

lim
j→∞

f(bij)− f(ai1) =
∞∑
i=0

lim
j→∞

f(bij)− f(ci−1) =

=
∞∑
i=0

f(ci)− f(ci−1) = lim
i→∞

f(ci)− f(a) = f(b)− f(a) = µ(∪ijEij).

We have used throughout that f is left-continuous. So µ is countably additive. By
Caratheodory’s extension theorem, µ extends to a measure on the sigma-algebra gener-
ated by A. That sigma-algebra contains all Borel sets (because we can obtain any open
interval as a countable intersection of sets of the form [a, b)). So µ is a Borel measure.

Alternative solution. In a homework exercise, you showed that, to prove µ is count-
ably additive, it is enough to prove that it satisfies the following continuity property:
if Ai ∈ A are nested A1 ⊃ A2 ⊃ · · · and ∩iAi = ∅ then limi µ(Ai) = 0. Taking
complements, it is enough to prove that if B1 ⊂ B2 ⊂ · · · ∈ A and ∪iBi = [0, 1) then
limi→∞ µ(Bi) = f(1)− f(0). Let bi be the largest number such that [0, bi) ⊂ Bi. Then
bi → 1 as i→∞. So µ(Bi) ≥ f(bi)− f(0)→ f(1)− f(0) by left-continuity.

Second alternative solution. Let G(x) be the infimum over all numbers y such that
f(y) − f(0) ≥ x. Then G is a Borel map from [0, f(1) − f(0)) to [0, 1). Observe that
µ(E) = m(G−1(E)) for any Borel E ⊂ [0, 1).

6. Let H0 be the linear span of the functions en(x) = einx (n ∈ Z) viewed as a subspace
of H = L2([0, 2π)). Show that



(a) given any g ∈ H0 the equation f − f ′′ = g has a unique solution f ∈ H0.

(b) The map g 7→ f is continuous as a linear map from H0 to H, with operator norm
1.

Hint: given f =
∑

n∈Z anen ∈ H0 find the Fourier coefficients for f − f ′′.
Solution. With f as above, f − f ′′ =

∑
n∈Z(1 + n2)anen ∈ H0. If g =

∑
n∈Z cnen then

we must have (1+n2)an = cn or an = cn
1+n2 . This proves existence and uniqueness. The

L2-norm of g is (
∑

n∈Z |cn|2)1/2. The L2-norm of f is(∑
n∈Z

(
|cn|

1 + n2

)2
)1/2

≤ ‖g‖2.

Since ‖f‖2 ≤ ‖g‖2, the operator norm is at most 1. However if g = 1 then f = 1. So
in this case, ‖f‖2 = ‖g‖2. So the operator norm is 1. This implies that the operator is
continuous because bounded norm implies continuity. In fact, because it is continuous,
it is uniformly continuous and therefore it can be extended to all of L2([0, 2π)).


