Homework 1 Hints

1 (k)

(i)

Let K be a compact set.

compact \Rightarrow closed : We will show K^c is open. Consider a point $z \in K^c$, for each point $x \in K$, we can chose two open balls U_x centered at z and V_x centered at x with radius $\frac{d(z,x)}{3}$. All such V_x forms a open cover of K, by compactness we can chose a finite subcover, $\{V_{x_k}\}$, then the intersection of the corresponding $\{U_{x_k}\}, \cap U_{x_k}$, is an open subset of K^c and contains z.

compact \Rightarrow bounded : If otherwise, consider the open balls B_k with center x_0 and radius k.

compact \Leftarrow closed and bounded : Since K is bounded, it is contained in some bounded box. Suppose for some infinite open cover of K, we cannot find a finite open cover. We split the box in to 2^n smaller box. Then there must be a box requires an infinite subcover. Keep doing the process iteratively we get a sequence of boxes $\{T_k\}$ that require infinite subcover. The intersection of $\{T_k\}$ will converge to some point p in K by closedness. And there is an open set containing p and a ball centering at p with positive radius. Then we see contradiction.

(ii)

(1)

Just prove in \mathbb{R}^n , closed and bounded iff sequentially compact.

Prove by contradiction. Let $d(x_n, y_n) \to 0$ with $x_n \in A$ and $y_n \in B$. Since A is compact, so $\{x_n\}$ admits a converging subsequence, use closedness of A, B to show there exists $x \in A$ and $y \in B$ with d(x, y) = 0.

(m)

Let $C_0 \supset C_1 \supset \ldots \supset C_k \supset \ldots$ Suppose otherwise, then $\{C_k^c\}_{k\geq 1}$ is an open cover of C_0 , by compactness there is a finite subcover $\{C_{n_k}^c\}$. Let $m = \max\{n_k\}$, then C_m is empty. Contradiction. (q)

Suppose $\{U_i\}_{i\in I}$ is an open cover of TE, then $\{f^{-1}(U_i)\}_{i\in I}$ is an open cover of E. $\{f^{-1}(U_i)\}_{i\in I}$ admits a finite subcover $\{f^{-1}(U_n)\}_n$, then $\{U_n\}_n$ is a finite subcover of TE.

9

Let K be a closed subset of compact C.

Any open cover of K union with K^c is an open cover of C. It admits finite subcover. Eliminating K^c from the subcover, we get a finite subcover of K.

10

Follows from 1(l).

$\mathbf{13}$

We define f on $x \in \overline{E} \setminus E$ using the limit of the $f(x_k)$ with $x_k \to x$. But we need to show the limit exists and is independent from the choice of x_k . These follow from uniform continuity. Then we can show the resulting function is continuous.

15

We define refinement of a partition in the following way. If the union of the boundary points of the intervals in partition Γ' contains all the boundary points of the intervals in partition Γ and also they are on the same side of the interval. We call Γ' is a refinement of Γ . It can be shown that $L_{\Gamma} \leq L_{\Gamma'} \leq U_{\Gamma'} \leq U_{\Gamma}$.

Suppose |f| < M. For given $\epsilon > 0$ and partition Γ satisfying the stated condition. Now since Γ is fixed, number of the intervals is fixed. We extend every side to the boundary point of the interval I. And we will get a refined partition of Γ , wlog we still call it Γ . Now partition Γ separates the interval I with finitely many hyperplanes. Now consider a partition $|\Gamma_1| < \sqrt{n\delta}$. Suppose the volume of a hyperplane P in \mathbb{R}^{n-1} is V. If we sum up the volume of intervals in Γ_1 that intersect with P, the sum will be at most $V\delta$. Now if we refine the partition Γ_1 when there is an intersection with Γ . The change of the Darboux sum by intersecting with P will be at most $2V\delta M$. Now since the number of hyperplanes in Γ is fixed and the volume of the hyperplane in \mathbb{R}^{n-1} only depends on the side lengths of the interval I and is bounded, so we can carefully choose δ so that for $|\Gamma_1| < \sqrt{n\delta}$, $L_{\Gamma_1} \ge L_{\Gamma} - \epsilon$ and $U_{\Gamma_1} \le U_{\Gamma} + \epsilon$.

$\mathbf{18}$

 F^c is open in \mathbb{R}^1 , so it can be written as countable union of disjoint open sets. $F^c = \bigcup(a_k, b_k)$, where one of a_k can be $-\infty$, one of b_k can be ∞ . If $a_k = -\infty$, we set $f = f(b_k)$ on (a_k, b_k) , and if $b_k = \infty$, we set $f = f(a_k)$. Otherwise we extend f on F^c by linearly interpolating f on (a_k, b_k) . Then we only need to verify left continuity at $a_n \neq -\infty$ when a_n is an accumulating point of $\{a_k\}$ (right continuity at $b_n \neq \infty$ respectively). This is shown by noting f is continuous on F and interpolation does not change the extremums within any left neighborhood.