
Homework 1 Hints

1
(k)
(i)
Let K be a compact set.
compact ⇒ closed : We will show Kc is open. Consider a point z ∈ Kc, for each point x ∈ K, we

can chose two open balls Ux centered at z and Vx centered at x with radius d(z,x)
3 . All such Vx forms

a open cover of K, by compactness we can chose a finite subcover, {Vxk
}, then the intersection of the

corresponding {Uxk
}, ∩Uxk

, is an open subset of Kc and contains z.
compact ⇒ bounded : If otherwise, consider the open balls Bk with center x0 and radius k.
compact⇐ closed and bounded : Since K is bounded, it is contained in some bounded box. Suppose
for some infinite open cover of K, we cannot find a finite open cover. We split the box in to 2n smaller
box. Then there must be a box requires an infinite subcover. Keep doing the process iteratively we
get a sequence of boxes {Tk} that require infinite subcover. The intersection of {Tk} will converge
to some point p in K by closedness. And there is an open set containing p and a ball centering at p
with positive radius. Then we see contradiction.
(ii)
Just prove in Rn, closed and bounded iff sequentially compact.
(l)
Prove by contradiction. Let d(xn, yn) → 0 with xn ∈ A and yn ∈ B. Since A is compact, so {xn}
admits a converging subsequence, use closedness of A,B to show there exists x ∈ A and y ∈ B with
d(x, y) = 0.
(m)
Let C0 ⊃ C1 ⊃ . . . ⊃ Ck ⊃ . . .. Suppose otherwise, then {Cc

k}k≥1 is an open cover of C0, by com-
pactness there is a finite subcover {Cc

nk
}. Let m = max{nk}, then Cm is empty. Contradiction.

(q)
Suppose {Ui}i∈I is an open cover of TE, then {f−1(Ui)}i∈I is an open cover of E. {f−1(Ui)}i∈I
admits a finite subcover {f−1(Un)}n, then {Un}n is a finite subcover of TE.

9
Let K be a closed subset of compact C.
Any open cover of K union with Kc is an open cover of C. It admits finite subcover. Eliminating
Kc from the subcover, we get a finite subcover of K.

10
Follows from 1(l).

13
We define f on x ∈ Ē\E using the limit of the f(xk) with xk → x. But we need to show the limit
exists and is independent from the choice of xk. These follow from uniform continuity. Then we can
show the resulting function is continuous.
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15
We define refinement of a partition in the following way. If the union of the boundary points of
the intervals in partition Γ′ contains all the boundary points of the intervals in partition Γ and also
they are on the same side of the interval. We call Γ′ is a refinement of Γ. It can be shown that
LΓ ≤ LΓ′ ≤ UΓ′ ≤ UΓ.
Suppose |f | < M . For given ε > 0 and partition Γ satisfying the stated condition. Now since Γ is
fixed, number of the intervals is fixed. We extend every side to the boundary point of the interval I.
And we will get a refined partition of Γ, wlog we still call it Γ. Now partition Γ separates the interval
I with finitely many hyperplanes. Now consider a partition |Γ1| <

√
nδ. Suppose the volume of a

hyperplane P in Rn−1 is V . If we sum up the volume of intervals in Γ1 that intersect with P , the
sum will be at most V δ. Now if we refine the partition Γ1 when there is an intersection with Γ. The
change of the Darboux sum by intersecting with P will be at most 2V δM . Now since the number of
hyperplanes in Γ is fixed and the volume of the hyperplane in Rn−1 only depends on the side lengths
of the interval I and is bounded, so we can carefully choose δ so that for |Γ1| <

√
nδ, LΓ1

≥ LΓ − ε
and UΓ1

≤ UΓ + ε.

18
F c is open in R1, so it can be written as countable union of disjoint open sets. F c = ∪(ak, bk), where
one of ak can be −∞, one of bk can be ∞. If ak = −∞, we set f = f(bk) on (ak, bk), and if bk =∞,
we set f = f(ak). Otherwise we extend f on F c by linearly interpolating f on (ak, bk). Then we only
need to verify left continuity at an 6= −∞ when an is an accumulating point of {ak} (right continuity
at bn 6= ∞ respectively). This is shown by noting f is continuous on F and interpolation does not
change the extremums within any left neighborhood.
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