Homework 10 Hints

1

$\cup A_{k}=\left(\cup_{k=1}^{N}\right) A_{k} \cup\left(\cup_{k=N+1}^{\infty} A_{k}\right)$. By finitely additivity, we have $\mu\left(\cup A_{k}\right)=\sum_{k=1}^{N} \mu\left(A_{k}\right)+\mu\left(B_{N}\right)$, where $B_{N}=\cup_{k=N+1}^{\infty} A_{k} . B_{N} \searrow \phi$, so $\mu\left(B_{N}\right) \rightarrow 0$. Thus we have the countably additivity.

2
(i) $\phi=\pi_{1}^{-1}(\phi)$, so $\phi \in \mathcal{A}$.
(ii) If $A \in \mathcal{A}$, then for some n and B measurable, we have $A=\pi_{n}^{-1}(B)$. Then we have $A^{c}=\pi_{n}^{-1}\left(B^{c}\right)$.
(iii) If $A_{1}, A_{2} \in \mathcal{A}$, suppose $A_{i}=\pi_{n_{i}}^{-1}\left(B_{i}\right), i=1,2$ and $n_{1} \leq n_{2}$. Then $A_{1} \cup A_{2}=\pi_{n_{1}}^{-1}\left(B_{1} \times\right.$ $\left.[0,1]^{n_{2}-n_{1}} \cup B_{2}\right)$.

3

There are various counter examples. For example, we consider $A_{n}=\pi_{n}^{-1}\{1\}$, then $\cap A_{n}=\{1\}^{\mathbb{N}}$ which is not in any \mathcal{B}_{n}.

4

To prove finitely additivity, we consider $A_{i}=\pi_{n_{i}}^{-1}\left(B_{i}\right), i=1,2$ and $n_{1} \leq n_{2}$, since $A_{1} \cap A_{2}=\phi$, so we have $B_{1} \times[0,1]^{n_{2}-n_{1}} \cap B_{2}=\phi$, thus $\mu_{0}\left(A_{1} \cup A_{2}\right)=\pi_{n_{2}}^{-1}\left(B_{1} \times[0,1]^{n_{2}-n_{1}} \cup B_{2}\right)=m_{n_{2}}\left(B_{1} \times\right.$ $\left.[0,1]^{n_{2}-n_{1}} \cup B_{2}\right)=m_{n_{1}}\left(B_{1}\right)+m_{n_{2}}\left(B_{2}\right)=\mu_{0}\left(A_{1}\right)+\mu_{0}\left(A_{2}\right)$.
Then we want to show if $A_{1} \supset A_{2} \supset \cdots$ with $\cup_{n} A_{n}=\phi$, then $\lim _{n \rightarrow \infty} \mu_{0}\left(A_{n}\right)=0$. First we observe that if $F=\pi_{n}^{-1}(K)$ with K closed in $[0,1]^{n}$, then F is closed in $[0,1]^{\mathbb{N}}$ under the defined metric. Let $A_{i}=\pi_{n_{i}}^{-1}\left(B_{i}\right)$ and we can make $n_{i} \leq n_{i+1}$. For any $\epsilon>0$, there is K_{1} closed in $[0,1]^{n_{1}}$, such that $K_{1} \in B_{1}$ and $m_{n_{1}}\left(A_{1}-K_{1}\right)<\frac{1}{2} \epsilon$. Let $F_{1}=\pi_{n_{1}}^{-1}\left(K_{1}\right)$. We have $\mu_{0}\left(A_{1}-F_{1}\right)<\frac{1}{2} \epsilon$. In $[0,1]^{n_{2}}$, we can choose K_{2} closed such that $K_{2} \in K_{1} \times[0,1]^{n_{2}-n_{1}}$ and $m_{n_{2}}\left(B_{2}-K_{2}\right)<\left(\frac{1}{2}+\frac{1}{4}\right) \epsilon$. Let $F_{2}=\pi_{n_{2}}^{-1}\left(K_{2}\right)$, then $F_{2} \subset F_{1}$ closed and $\mu_{0}\left(A_{2}-F_{2}\right)<\left(\frac{1}{2}+\frac{1}{4}\right) \epsilon$. Keep on doing the process, we have $\left\{F_{n}\right\}_{n}$ decreasing closed sets in $[0,1]^{\mathbb{N}}, F_{n} \subset A_{n}$ and $\mu_{0}\left(A_{n}-F_{n}\right)<\sum_{k=1}^{n} \frac{1}{2^{k}} \epsilon$. Since $\cap_{n} A_{n}=\phi$, so $\cap_{n} F_{n}=\phi$. But $[0,1]^{\mathbb{N}}$ is compact under the defined metric, so there exists N such that $F_{N}=\phi$. Then for $n \geq N$, $\mu_{0}\left(A_{n}\right)<\sum_{k=1}^{N} \frac{1}{2^{k}} \epsilon<\epsilon$. So we know $\lim _{n \rightarrow \infty} \mu_{0}\left(A_{n}\right)=0$.

5

We just prove that $B_{r}(\mathbf{0})$ is measurable. $B_{r}(\mathbf{0})=\left\{\frac{1}{2}\left|x_{1}\right|<r\right\} \cap\left\{\frac{1}{2}\left|x_{1}\right|+\frac{1}{4}\left|x_{2}\right|<r\right\} \cap \cdots$. This is a countable intersection of measurable sets in $[0,1]^{\mathbb{N}}$, so $B_{r}(\mathbf{0})$ is measurable.

6
$B=\left\{x \in[0,1]^{\mathbb{N}}, \limsup _{i \rightarrow \infty} x_{i}=1\right\}=\cap_{k=1}^{\infty} \cap_{N=1}^{\infty} \cup_{n=N+1}^{\infty}\left\{x_{n}>1-\frac{1}{k}\right\}$. So it is measurable.
We note $\mu\left(\left(\cup_{n=N+1}^{\infty}\left\{x_{n}>1-\frac{1}{k}\right\}\right)^{c}\right)=0$ for k, N fixed, so $\mu\left(\cup_{n=N+1}^{\infty}\left\{x_{n}>1-\frac{1}{k}\right\}\right)=1$. Thus by countably additivity, $\mu(B)=1$.

