
Homework 12 Hints

8.8
Following the hint in the book,

∫ ∣∣∣
∫
f(x, y)dx

∣∣∣
p

dy ≤
∫ ∣∣∣∣
∫
f(z, y)dz

∣∣∣∣
p−1

|f(x, y)|dx dy

=

∫ ∣∣∣∣
∫
f(z, y)dz

∣∣∣∣
p−1

|f(x, y)|dy dx

≤
{∫ ∣∣∣∣

∫
f(z, y)dz

∣∣∣∣
(p−1)p′

dy

}1/p′ ∫ [∫
|f(x, y)|pdy

]1/p
dx

=

{∫ ∣∣∣∣
∫
f(z, y)dz

∣∣∣∣
p

dy

}1−1/p ∫ [∫
|f(x, y)|pdy

]1/p
dx.

Divide both side by
{∫ ∣∣∫ f(z, y)dz

∣∣p dy
}1−1/p

, we will get desired result.

9.5
Since G1 is compact and Gc is closed, so d = d(G1, G

c) > 0. Let G2 = {x : d(x,G1) < d
2}, then G2

is open and G1 ⊂ G2 and G2 ⊂ G. Then we take K = e
1

d2/9−|x|2 and h = χG2
∗K.

9.6
First we note ||f ∗K||∞ ≤ ||f ||1||K||∞.
|f ∗K(x+ h)− f ∗K(x)| ≤

∫
|K(x+ h− t)−K(x− t)| · |f(t)|dt. Given ε > 0, there is δ > 0, such

that if h < δ, |K(x+h− t)−K(x− t)| < ε, so |f ∗K(x+h)−f ∗K(x)| < ||f ||1ε. This shows uniform
continuity and ensures boundedness.

9.7
f(x, y) =

∫∞
−∞ f(t)Py(x− t)dt, where P (x, y) = Py(x) = 1

π
y

y2+x2 .
f(x,y)−f(x+h,y)

h =
∫
f(t)∂P∂x (x−t+h′, y)dt, where h′ depend on x, t and 0 < h′ < h. We note ∂P

∂x (x, y) =

− 2xy
(y2+x2)2 , the function is uniformly continuous and uniformly bounded as well as integrable once y >

0 fixed.
∫
|f(t)|

∣∣∂P
∂x (x− t+ h′, y)− ∂P

∂x (x− t, y)
∣∣ dt ≤

∫
|fk(t)|

∣∣∂P
∂x (x− t+ h′, y)− ∂P

∂x (x− t, y)
∣∣ dt+∫

|f −fk(t)|
∣∣∂P
∂x (x− t+ h′, y)− ∂P

∂x (x− t, y)
∣∣ (1−χ[−k,k])dt, where fk = fχ[−k,k]. The first term will

converge to 0 by dominated convergence. In the second term,
∣∣∂P
∂x (x− t+ h′, y)− ∂P

∂x (x− t, y)
∣∣ (1−

χ[−k,k]) can be bounded by |h′| multiplies a term which is in both L1 and L∞ for t, k large enough.

So we can show ∂f
∂x =

∫
f(t)∂P∂x (x− t, y)dt. By similar argument we can show the desired result.

For a complete proof, see the attached pages.

9.10
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The proof is similar to Theorem (9.16) in the book.

10.16
Since ||Tf ||p = supg

∫
(Tf)gdx
||g||p′

≤M ||f ||p. So supf supg

∫
(Tf)gdx
||g||p′ ||f ||p

≤M . Since K > 0, we just need to

check the case where f, g > 0. We note
∫

(Tf)gdx =
∫ ∫

f(y)K(x−y)dyg(x)dx =
∫

(T g̃)(−y)f(y)dy =
∫

(T g̃)(y)f̃(y)dy, where g̃(x) = g(−x) and f̃(y) = f(−y). So ||T g̃||p′ = supf̃

∫
(T g̃)(y)f̃(y)dy

||f̃ || ≤M ||g̃||p′ .
Thus we get the desired result.

10.26
(i) When −η + p − 1 > 0, (

∫ x
0
f(t)dt)p = (

∫ x
0
f(t)t

η
p t−

η
p dt)p ≤ (

∫ x
0
fp(t)tηdt)(

∫ x
0

(t−
η
p )p
′
dt)p/p

′
=

( p−1
−η+p−1 )p−1x−η+p−1(

∫ x
0
fp(t)tηdt) = cx−η+p−1(

∫ x
0
fp(t)tηdt). So we have

∫ ∞

0

(

∫ x

0

f(t)dt)pxαdx

≤c
∫ ∞

0

xp−η−1
∫ x

0

fp(t)tηdtxαdx

=c

∫ ∞

0

∫ ∞

t

xp−η−1+αdxfp(t)tηdt

=− c

p− η + α

∫ ∞

0

fp(t)tα+pdt.

The last equality holds as long as α + p − η < 0, so we should have α + p < η < p − 1, which is
possible for α < −1.
(ii) Similar to (i).
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(∼ Wheeden-Zygmund 9.7) Let Ky = π−1y
x2+y2 for x ∈ R and y > 0. If f0 ∈

Lp(R) with 1 ≤ p ≤ ∞, show that the Poisson integral f(x, y) = (f0∗Ky)(x)
satisfies Laplace’s equation Δf = 0 in the upper half plane y > 0.

We prove first that f ∈ C∞({y > 0}). Let P (x, y) = Ky(x).

Fix x ∈ R and y > 0. We prove that f is smooth first for f0 ∈ C∞
c (R)

and then argue by approximation. We will also show the following formula
to compute the derivatives, for a, b a given pair of non negative integers,

∂a+bf

(∂x)a(∂y)b
(x, y) =

�

R
f0(t)

∂a+bP

(∂x)a(∂y)b
(x − t, y)dt.

The results follows from Theorem 9.3 if b = 0. What we need to show is the
same formula holds for any b and a = 0, then applying Theorem 9.3 we can
recover it when f0 ∈ C∞

c .

Let’s proceed by induction assuming that

∂bf

(∂y)b
(x, y) =

�

R
f0(t)

∂bP

(∂y)b
(x − t, y)dt.

The important observation is that for x ∈ R and y > 0 fixed the function
φ(t, h) : R × [−y/2, y/2] → R defined as

φx,y(t, h) =
∂b+2P

(∂y)b+2
(x − t, y + h),

is globally bounded (notice also that �φx,y�∞ is independent of x) and allows
us to control the difference quotient (for h �= 0),

������

∂bP
(∂y)b (x − t, y + h) − ∂bP

(∂y)b (x − t, y)

h
− ∂b+1P

(∂y)b+1
(x − t, y)

������
≤ h �φx,y�∞ .

It gives us the uniform convergence as h goes to zero of the following integral,������

∂bf
(∂y)b (x, y + h) − ∂bf

(∂y)b (x, y)

h
−
�

R
f0(t)

∂b+1P

(∂y)b+1
(x − t, y)dt

������
≤

�

supp(f0)

������
f0(t)




∂bP
(∂y)b (x − t, y + h) − ∂bP

(∂y)b (x − t, y)

h
− ∂b+1P

(∂y)b+1
(x − t, y)



������
dt

Therefore f has (b+1) derivatives and it coincide with the proposed formula.

Now we want to show an estimate for f to be able to complete the proof
for f0 merely in Lp. We want to show that for f0 ∈ C∞

c (R) and any compact
set K ⊆ {y > 0} we have that

����
∂a+bf

(∂x)a(∂y)b

����
L∞(K)

≤ C�f0�p



where C depends on a, b and the (positive) distance from K to {y = 0}. By
the already shown formula we have by Hölder’s inequality that,

����
∂a+bf

(∂x)a(∂y)b
(x, y)

���� ≤ �f0�p

����
∂a+bP

(∂x)a(∂y)b
(x − ·, y)

����
p/(p−1)

.

But it can be shown by induction on the number of derivatives taken that

the function of t ∂a+bP
(∂x)a(∂y)b (x−t, y) is integrable in Lp/(p−1) and that its norm

depends only on a, b and the distance y from (x, y) to the line {y = 0}.

Finally let {fk
0 }∞k=1 ⊆ C∞

c (R) such that fk
0 → f0 in Lp. They generate

the sequence in the upper space {fk}∞k=1 given by

fk(x, y) =

�

R
fk
0 (t)P (x − t, y)dt.

For any pair a, b of non negative integers and any pair of indexes k, l ≥ 1 we
have that ����

∂a+bfk

(∂x)a(∂y)b
− ∂a+bf l

(∂x)a(∂y)b

����
L∞(K)

≤ C�fk
0 − f l

0�p.

Therefore the sequence of derivatives is Cauchy and converges uniformly in
compact sets to some continuous function ga,b. It is now a known property
that if a sequence of smooth functions converge uniformly over compact
sets and their derivatives also converge uniformly over compact sets then
the limit function is differentiable and its derivatives are the limits of the
derivatives of the sequence. Moreover the same estimates we already proved
remains true,

����
∂a+bf

(∂x)a(∂y)b

����
L∞(K)

≤ C�f0�p for every f0 ∈ Lp.

The fact that f is harmonic follows now because P is already harmonic
outside the origin (it is the imaginary part of the analytic function z =
x + iy → 1/z),

Δf(x, y) =

�
f0(t)ΔP (x − t, y)dt = 0.


