Homework 13 Hints

1
$(\mathrm{b}) \Leftrightarrow(\mathrm{c})$: This is easily seen using the fact μ is a probability measure.
(a) \Rightarrow (b): Let $f_{k}(x)=\max \{0,1-k \cdot d(x, F)\}$. So we gave a sequence of functions $f_{k} \in C_{c}(X)$ and $f_{k} \searrow \chi_{F}$. Then $\lim \sup _{n \rightarrow \infty} \mu_{n}(F) \leq \limsup \operatorname{sum}_{n \rightarrow \infty} \int f_{k} d \mu_{n}=\int f_{k} d \mu \rightarrow \mu(F)$.
(b),(c) \Rightarrow (a): Suppose $0 \leq f \leq 1 . \quad \int f d \mu=\int_{0}^{1} \mu(f \geq x) d x \geq \int_{0}^{1} \lim \sup _{n \rightarrow \infty} \mu_{n}(f \geq x) d x \geq$ $\lim \sup _{n \rightarrow \infty} \int_{0}^{1} \mu_{n}(f \geq x) d x=\lim \sup _{n \rightarrow \infty} \int f d \mu_{n}$.
Thus we have proved $\int f d \mu \geq \lim \sup _{n \rightarrow \infty} \int f d \mu_{n}$. To prove $\liminf _{n \rightarrow \infty} \int f d \mu_{n} \geq \int f d \mu$ we notice that $1-f \in C_{c}(X)$. Or we can follow 6.5 in homework 10, using the fact that $\int f d \mu=\int_{0}^{1} \mu(f>x) d x$.

2

Let $\mathcal{U}=\{F: F$ closed and $\mu(X \backslash F)=0\}$, which essentially means that $\{X \backslash F\}_{F \in \mathcal{U}}$ are all the open sets with measure zero. $\cup_{F \in \mathcal{U}}(X \backslash F)$ is an open set. By compact separability, we know $\cup_{F \in \mathcal{U}}(X \backslash F)=$ $\cup_{k=1}^{\infty}\left(X \backslash F_{k}\right)$ with $F_{k} \in \mathcal{U}$. Then $\mu\left(\cup_{F \in \mathcal{U}}(X \backslash F)\right)=\mu\left(\cup_{k=1}^{\infty}\left(X \backslash F_{k}\right)\right) \leq \sum_{k=1}^{\infty} \mu\left(X \backslash F_{k}\right)=0$. And $F=\cap_{k=1}^{\infty} F_{k}$ is the set we are looking for. To show it is smallest, we just note that if $F^{\prime} \subset F$ has the same property, then $\mu\left(X \backslash F^{\prime}\right)=\mu(X \backslash F)=0$, so $X \backslash F^{\prime} \subset X \backslash F$ which implies $F \subset F^{\prime}$, so $F=F^{\prime}$. And uniqueness follows similarly by taking the intersection.

3

Let f be the extension of Riemann-Lebesgue function on \mathbb{R} such that $f(x)=0$ for $x<0$ and $f(x)=1$ for $x>1$. For interval $(a, b]$ define $\mu((a, b])=f(b)-f(a)$. Since f is monotone and continuous, we know it is a Lebesgue-Stieltjes measure and $\mu((a, b))=f(b)-f(a)$.
To see its support is the Cantor set C, we first notice that $\mu\left(C^{c}\right)=0$. For F closed subset of C, F^{c} is open. If $F \neq C$, then $F^{c} \cap C \neq \phi$. Noticing the end points of the closed interval kept in the construction procedure is dense in C, we can thus show $\mu\left(F^{c}\right) \neq 0$.

4
Let $\mathbb{Q}=\left\{r_{n}\right\}_{n}$, let $\mu(B)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \mathbf{1}_{r_{n} \in B}$ for B Borel measurable.

