Homework 14 Hints

1

Follow the hint.

2

First we note that the span of $\{e_n\}$ is dense in C([0,1]). Then we can approximate each e_n by its Taylor series expansion at x = 0 which is a uniform approximation on [0,1]. Thus we can show polynomial is dense in C([0,1]).

3

⇒:

For any $k \ge 0$, $f^{(k)} \in C(\mathbb{T})$. $\hat{f}^{(k)}(n) = (in)^k \hat{f}(n)$. But $\sum_{n \in \mathbb{Z}} |\hat{f}^{(k)}(n)| < \infty$, so $|\hat{f}(n)| \le C_k |n|^{-k}$.

We can show for any $k \ge 0$, $\sum_{n \in \mathbb{Z}} |\hat{f}(n)(in)^k| < \infty$. For k = 0, this implies that f = g a.e. where $g = \sum \hat{f}(n)e^{inx}$ continuous and the convergence is absolute pointwise and uniform.

$$\begin{aligned} \frac{g(y) - g(x)}{y - x} &= \frac{1}{y - x} \left(\sum_{n \in Z} \hat{f}(n) e^{inx} - \sum_{n \in Z} \hat{f}(n) e^{iny} \right) \\ &= \sum_{n \in Z} \hat{f}(n) \frac{e^{iny} - e^{inx}}{y - x} = \sum_{n \in Z} \hat{f}(n) (in) e^{in\theta_n}, \end{aligned}$$

where θ_n lies between x, y. This converges absolutely pointwise and uniformly to $\sum_{n \in \mathbb{Z}} \hat{f}(n)(in)e^{inx}$ when $y \to x$. So we know $g' = \sum_{n \in \mathbb{Z}} \hat{f}(n)(in)e^{inx}$ is a continuous function, so $g \in C^1(\mathbb{T})$. Then we can prove by induction $g \in C^{\infty}(\mathbb{T})$.