
Homework 3 Hints
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We will follow the hint on the book. We first construct a Cantor-type set E1 with positive measure
1− δ1 the same manner as (5) in HW2. Then the removed set is a countable union of disjoint open
intervals, on each subinterval(we may include the end point since it is in E1) we construct Cantor-type
sets with ratio the removed interval length w.r.t. the original interval at kth stage δ23−k. Then the
removed set is a countable union of disjoint open intervals. We call the closed set we keep E2. Itera-
tively, we define set Ek and we know the measure of Ek is 1 − δ1 . . . δk. Ek is a increasing sequence

and we define E as the limit of Ek. We can select δk to make Π∞k=1δk > 0, for example δk = δ
2

2k .
Then we can show E and Ec are both dense in [0, 1]. For each interval [a, b], it will contain a interval
from the removed set at some stage and due to our construction a positive measure part will be in E
and another positive measure part of the interval will be in Ec.

3
F measurable ⇒ f, g measurable : Consider F−1(G× Rn).
f, g measurable ⇒ F measurable : Open set on R2n can be represented by countable union of Carte-
sian product of open set on Rn and Rn. And we have already seen from last homework that Cartesian
product of two measurable sets is measurable.

5
We follow the hint in the book. We know that Cantor-Lebesgue function F is a surjection from the
Cantor Set to [0, 1], so if we select a non-measurable set A. The image FA under the proper inverse
would be a subset of the Cantor set which is of measure zero. Then we take φ as the characteristic
function of the image FA. We note φ is measurable while (φ(f))−1(1) is non-measurable.
Now we need to define a measurable proper inverse f to justify our argument. We define the inverse
using a limit process similar to the one when we define the Cantor set. We note Cantor Lebesgue
function is an increasing function so at each stage, the inverse is well defined except at the points c
such that for new end points bk < ak, F (ak) = F (bk) = c, for such case we define f(c) = ak. Then
at each stage we have a piecewise linear function which is measurable. And we can show that the
sequence of function we defined will converge since for any x either F (ak) = x for some k and left
end point ak or it is the limit of a sequence of such points.

6
(a) {f + g > a} = ∪rk({∞ > f > rk} ∩ {∞ > g > a − rk}) ∪ Z, where Z is a subset of
{f = ±∞} ∪ {g = ±∞}.
(b)
fg measurable:
For a > 0, {fg > a} = [∪rk>0({f > rk} ∩ {g > a

rk
})] ∪ [∪rk<0({f < rk} ∩ {g < a

rk
})].

{fg > 0} = ({f > 0} ∩ {g > 0}) ∪ ({f < 0} ∩ {g < 0}).
For a < 0, {fg > a} = [∪rk>0({0 < f < rk} ∩ {0 > g > a

rk
})] ∪ [∪rk<0({0 > f > rk} ∩ {0 < g <

a
rk
})] ∪ {f = 0} ∪ {g = 0} ∪ {fg > 0}.

1



If we define f + g where it has undetermined form to be a fixed value b:
Then {f + g > a} = ∪rk({∞ > f > rk} ∩ {∞ > g > a− rk}) ∪ ({f =∞} ∩ {g =∞}) ∪ χb>a[({f =
−∞} ∩ {g =∞}) ∪ {f =∞} ∩ {g = −∞}].

8
(a) f + g is usc : limx→x0 sup f(x) ≤ f(x0) and limx→x0 sup g(x) ≤ g(x0) so limx→x0 sup(f + g)(x) ≤
limx→x0 sup f(x) + limx→x0 sup g(x) ≤ f(x0) + g(x0).
f − g not necessarily usc.
fg is usc when f, g ≥ 0.
(b) infk fk(x) ≤ fk(x) for any k, so limx→x0

sup infk fk(x) ≤ limx→x0
sup fk(x) ≤ fk(x0) for any k.

(c) For any ε > 0, there is δ > 0 and K > 0 such that when x ∈ Bδ(x0) and k > K, |fk(x)−f(x)| < ε.
So limx→x0 sup f(x) ≤ limx→x0 sup fk(x) + ε ≤ fk(x0) + ε ≤ f(x0) + 2ε.

12
We can define the sequence of approximating simple functions as in Theorem 4.13 in the book, then
the simple functions are measurable since f is continuous a.e.. Then we know as the limit f is
measurable.
In Rn, the construction is similar.
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