Homework 6 Hints

7.1

Since $m=m(\{|f|>0\})>0$, so there is $\alpha>0$ such that $m(\{|f|>\alpha\})>\frac{m}{2}$. Then there is r such that $m(\{|f|>\alpha\} \cap\{|x|<r\})>\frac{m}{4}$ and we note that $\int_{\{|f|>\alpha\} \cap\{|x|<r\}}|f|>\frac{\alpha m}{4}$. For any x, a ball centered at x with radius $|x|+r$ will contain the set $\{|f|>\alpha\} \cap\{|x|<r\}$. So there is a cube Q_{x} with side length $2(|x|+r)$ containing the set. Then $f^{*}(x) \geq \frac{1}{\left|Q_{x}\right|} \frac{\alpha m}{4}=\frac{m \alpha}{2^{n+2}|x|^{n}} \frac{|x|^{n}}{(|x|+r)^{n}} \geq \frac{m \alpha}{2^{n+2}(r+1)^{n}}|x|^{-n}$.

7.2

Suppose $|\phi|<M$ Since $\int \phi=1$, so

$$
\begin{aligned}
\left(f * \phi_{\epsilon}\right)(x)-f(x) & =\int(f(x-y)-f(x)) \phi_{\epsilon}(y) d y \\
& \leq \frac{1}{\epsilon^{n}} \int|f(x-y)-f(x)| \phi\left(\frac{y}{\epsilon}\right) d y \\
& \leq \frac{c_{n}}{\left|B_{\epsilon}(\mathbf{0})\right|} \int_{B_{\epsilon}(\mathbf{0})}|f(x-y)-f(x)| M d y
\end{aligned}
$$

And we know $\frac{c_{n}}{\left|B_{\epsilon}(\mathbf{0})\right|} \int_{B_{\epsilon}(\mathbf{0})}|f(x-y)-f(x)| M d y$ will converge to 0 in the Lebesgue set of f.

7.4

This is a generalization of (3.37) in the book and we will adopt a similar proof. Following the proof of (3.37), we have \mathcal{E}_{i} subset of E_{i} and interval I_{i} such that $\left|\mathcal{E}_{i}\right|>\frac{3}{4}\left|I_{i}\right|$. Supposing $\left|I_{1}\right| \geq\left|I_{2}\right|$, there is $q \in \mathbb{N}$ such that $q\left|I_{2}\right| \leq\left|I_{1}\right|<(q+1)\left|I_{2}\right|$. We divide I_{1} into q non-overlapping subintervals with equal length. There must be a subinterval \tilde{I}_{1} such that $\left|\mathcal{E}_{1} \cap \tilde{I}_{1}\right|>\frac{3}{4}\left|\tilde{I}_{1}\right|$. And we have $\frac{q}{q+1}\left|\tilde{I}_{1}\right|<\left|I_{2}\right| \leq\left|\tilde{I}_{1}\right|$. Since $q \geq 1$ so $\frac{1}{2}\left|\tilde{I}_{1}\right|<\left|I_{2}\right| \leq\left|\tilde{I}_{1}\right|$. We still denote \tilde{I}_{1} as I_{1} and $\mathcal{E}_{1} \cap \tilde{I}_{1}$ as \mathcal{E}_{1}. We align the left end point of I_{1} and I_{2} by a translation of I_{2} with τ, then we note for $d<\frac{3}{4}\left|I_{2}\right|-\frac{1}{4}\left|I_{1}\right|, \mathcal{E}_{1}$ and $\mathcal{E}_{2}+\tau+d$ must have a nonempty intersection, since $\left|I_{1}\right|+d<\frac{3}{4}\left|I_{1}\right|+\frac{3}{4}\left|I_{2}\right| \leq\left|\mathcal{E}_{1}\right|+\left|\mathcal{E}_{2}+\tau+d\right|$.

2.1

$\left|x \sin \left(\frac{1}{x}\right)\right|<|x| \leq 1$, so f is bounded. To show it is not of bounded variation, consider the points $\frac{1}{\left(\frac{1}{2}+n\right) \pi}$.

2.4

For any partition $\Gamma, S_{\Gamma}\left[f_{k}\right] \rightarrow S_{\Gamma}[f]$ by pointwise convergence.
Consider f_{n} to be the function in 2.1 but is defined to be 0 on $\left[0, \frac{1}{n}\right]$.

2.7

We will follow the hint on the book. Let $\Gamma^{n}=\left\{x_{i}\right\}_{n}$, then $0 \leq V\left[x_{i}-1, x_{i}\right]-\left|f\left(x_{i}-1\right)-f\left(x_{i}\right)\right| \leq$ $V[a, b]-S_{\Gamma^{n}}$. For any y in $[a, b]$ and any sequence $y_{k} \rightarrow y$, we just take y and y_{k} to be in the partition
Γ^{k} and adjacent. We suppose $y>y_{k}$ wlog. Since f is continuous, $\left|f(y)-f\left(y_{i}\right)\right| \rightarrow 0$, from (2.9) in the book, $V[a, b]-S_{\Gamma^{n}} \rightarrow 0$, so $V\left[y_{i}, y\right] \rightarrow 0$. This shows the continuity of V at y. Then we note $P[a, x]=\frac{1}{2}(V[a, x]+f(x)-f(a))$ and $N[a, x]=\frac{1}{2}(V[a, x]-f(x)+f(a))$.

