Homework 7 Hints

7.6

Check the derivative of x^{α} , $\alpha x^{\alpha-1}$, satisfies **7.29**.

7.10

Note the fact that the image of $[a_i, b_i]$ is an interval of length at most $V(b_i) - V(a_i)$. Then for a set Z with measure zero, we have for any $\epsilon > 0$, $Z \in G_{\epsilon}$ where $|G_{\epsilon}| < \epsilon$. Use the fact G_{ϵ} it is the countable union of non-overlapping intervals and f is absolutely continuous we can show the image of Z is of measure zero.

For any measurable set, it can written as the union of a $F_{\sigma} \cup Z$. Considering [a, b] is bounded and the image of a compact set is compact since f is absolutely continuous, the image of a measurable subset of [a, b] is still measurable.

7.11

(a) Measurability follows from the fact that the preimage of an open set is measurable.

(b) Firs we note if $f = \chi_{(a,b)}$, the result follows from (7.29). Then we can show the result for f the characteristic function of an open set. For characteristic function with measure zero, we can show the result by approximating with open set $|G_{\epsilon}| < \epsilon$. So we can prove the result for characteristic function of measurable set. Then approximate measurable function with simple functions and apply Dominated convergence.

7.12

To prove $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$, consider $x_1 = p \ln a$ and $x_2 = q \ln b$. To prove the generalization, use the hint on the book.

7.14

 $\phi \text{ is convex} \Rightarrow \text{ continuous and } \phi(\frac{x_1+x_2}{2}) \leq \frac{\phi(x_1)+\phi(x_2)}{2} \text{ follows from (7.40).}$ $\phi \text{ is convex} \Leftarrow \text{ continuous and } \phi(\frac{x_1+x_2}{2}) \leq \frac{\phi(x_1)+\phi(x_2)}{2}$ We can prove by induction that $\phi(\frac{r}{2^k}x_1 + \frac{2^k-r}{2^k}x_2) \leq \frac{r}{2^k}\phi(x_1) + \frac{2^k-r}{2^k}\phi(x_2).$

$$\phi(\frac{r}{2^{k+1}}x_1 + \frac{2^{k+1} - r}{2^{k+1}}x_2)$$

$$= \phi(\frac{1}{2}(\frac{r}{2^k}x_1 + \frac{2^k - r}{2^k}x_2) + \frac{1}{2}x_2)$$

$$\leq \frac{1}{2}\phi(\frac{r}{2^k}x_1 + \frac{2^k - r}{2^k}x_2) + \frac{1}{2}\phi(x_2)$$

$$\leq \frac{r}{2^{k+1}}\phi(x_1) + \frac{2^{k+1} - r}{2^{k+1}}\phi(x_2).$$

Then the result holds by continuity.

8.2

(a) $||f||_{\infty} \leq \sup \int_{E} fg$ with $||g||_{1} = 1$. If $||f||_{\infty} = 0$ then f = 0 a.e., the result holds. If $||f||_{\infty} < \infty$, then for any $\epsilon > 0$, $m_{\epsilon} = |\{x \in E : f(x) > ||f||_{\infty} - \epsilon\}| > 0$, consider $g_{\epsilon} = \operatorname{sign}(f) \frac{1}{m_{\epsilon}}$. If $||f||_{\infty} = \infty$, use similar argument for $f_{k} = \min(|f|, k)$ and then let $k \to \infty$. (b) $||f||_{1} \leq \sup \int_{E} fg$ with $||g||_{\infty} = 1$. If $||f||_{1} < \infty$, consider $g = \operatorname{sign}(f)$. If $||f||_{\infty} = \infty$, use similar argument for $f_{k} = \chi_{\{|f| < k\}}\chi_{\{|x| < k\}}f$ and then let $k \to \infty$.

and then let $k \to \infty$.

(c) For $f \notin L^p(E)$, there exists a function $g \in L^{p'}(E)$ such that $fg \notin L^1(E)$. For any k > 0, there is $g_k \in L^{p'}(E)$ such that $\int_E fg_k \ge k$ with $||g_k||_{p'} \le 1$. Then let $a_k = \frac{1}{k^2}$ and consider $g = \sum a_k g_k$.