Homework 8 Hints

8.4

Holder's inequality: $\left|\int f g\right| \leq\|f\|_{p}\|g\|_{p^{\prime}}$. When $\|f\|_{p}=\|g\|_{p^{\prime}}=1$.

$$
\begin{aligned}
\left|\int f g\right| & \leq \int|f g| \\
& \leq \int_{E}\left(\frac{|f|^{p}}{p}+\frac{|g|^{p^{\prime}}}{p^{\prime}}\right) \\
& =\int\|f\|_{p}\|g\|_{p^{\prime}}
\end{aligned}
$$

Equality holds in the first inequality iff $f g$ is always of the same sign. In the second one, equality holds iff $|f|^{p}=|g|^{p^{\prime}}$ a.e.. More generally $\frac{|f|^{p}}{\|f\|_{p}}=\frac{|g|^{p^{\prime}}}{\|g\|_{p^{\prime}}}$.
Minkowski's inequality: $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$.

$$
\begin{aligned}
\|f+g\|_{p}^{p} & =\int_{E}|f+g|^{p-1}|f+g| \\
& \leq \int_{E}|f+g|^{p-1}|f|+\int_{E}|f+g|^{p-1}|g| \\
& \leq\|f+g\|_{p}^{p-1}| | f\left\|_{p}+\right\| f+g\left\|_{p}^{p-1}\right\| g \|_{p}
\end{aligned}
$$

Last inequality is equality iff $|f+g|$ is multiple of $|f|(|g|)$.
8.5
$N_{p}[f]=\left(\frac{1}{|E|} \int_{E}|f|^{p}\right)^{1 / p}$. To show if $p_{1}<p_{2}$, then $N_{p_{1}}[f] \leq N_{p_{2}}[f]$, we consider the following:

$$
\begin{aligned}
\int_{E}|f|^{p_{1}} & \leq\left(\int_{E} 1\right)^{1-\frac{p_{1}}{p_{2}}}\left(\int_{E}\left(|f|^{p_{1}}\right)^{p_{2} / p_{1}}\right)^{\frac{p_{1}}{p_{2}}} \\
& =|E|^{1-\frac{p_{1}}{p_{2}}}\left(\int_{E}|f|^{p_{2}}\right)^{\frac{p_{1}}{p_{2}}} .
\end{aligned}
$$

8.6

Generalization of Holder's inequality. If $\sum_{i=1}^{k} \frac{1}{p_{i}}=\frac{1}{r}$, where $p_{i}, r \geq 1$, then

$$
\left\|f_{1} \cdots f_{k}\right\|_{r} \leq\left\|f_{1}\right\|_{p_{1}} \cdots\left\|f_{k}\right\|_{p_{k}}
$$

When $k=2$, we have from Holder's inequality,

$$
\begin{aligned}
\int\left|f_{1} f_{2}\right|^{r} & \leq\left\|f_{1}^{r}\right\|_{p_{1} / r}\left\|f_{2}^{r}\right\|_{p_{2} / r} \\
& =\left\|f_{1}\right\|_{p_{1}}^{r}\left\|f_{2}\right\|_{p_{2}}^{r} .
\end{aligned}
$$

Then we prove by induction,

$$
\begin{aligned}
\int\left|f_{1} \cdots f_{k+1}\right|^{r} & \leq\left\|f_{1} \cdots f_{k}\right\|_{\frac{1}{\sum_{i=1}^{k} p_{i}}}\left\|f_{k+1}\right\|_{p_{k+1}} \\
& \leq\left\|f_{1}\right\|_{p_{1}} \cdots\left\|f_{k+1}\right\|_{p_{k+1}}
\end{aligned}
$$

8.11

$$
\left\|f_{k} g_{k}-f g\right\|_{p} \leq\left\|f_{k} g_{k}-f g_{k}\right\|_{p}+\left\|f g_{k}-f g\right\|_{p}
$$

$\left\|f_{k} g_{k}-f g_{k}\right\|_{p} \leq M| | f_{k}-f \|_{p}$, so the first term on RHS converges to zero. $\left|f g_{k}-f g\right| \leq 2 M|f|$, since $p<\infty$, by dominated convergence we have the second term on RHS also converges to zero.

8.12

(a) $\left|\left|\left|f\left\|_{p}-\left|\left|f_{k}\left\|_{p}\left|\leq\left|\left|f-f_{k}\right| \|_{p} \rightarrow 0\right.\right.\right.\right.\right.\right.\right.\right.\right.$.
(b) $\left|f-f_{k}\right|^{p} \leq 2^{p}\left(|f|^{p}+\left|f_{k}\right|^{p}\right)$. Let $g_{k}=2^{p}\left(|f|^{p}+\left|f_{k}\right|^{p}\right)-\left|f-f_{k}\right|^{p}$, then $\lim _{k \rightarrow \infty} g_{k}=2^{p+1}|f|^{p}$ a.e.

So by Fatou's Lemma,

$$
\begin{equation*}
\int 2^{p+1}|f|^{p} \leq \liminf \left(\int 2^{p}|f|^{p}+\int 2^{p}\left|f_{k}\right|^{p}+\int\left|f-f_{k}\right|^{p}\right) \tag{1}
\end{equation*}
$$

By the convergence of L^{p} norm, we have limsup $\int\left|f-f_{k}\right|^{p}=0$.

8.13

For any $\epsilon>0$, we can select $\delta>0$ such that if $|E|<\delta$, then $\int_{E}|g|^{p^{\prime}}<\epsilon$. And we can find N, such that $\int_{B_{N}(\mathbf{0})^{c}}|g|^{p^{\prime}} \leq \epsilon$. Then by Egorov's theorem, we can find $F \subset B_{N}(\mathbf{0})$ such that $\left|B_{N}(\mathbf{0})-F\right|<\delta$ and K such that for $k>K,\left|f-f_{k}\right|^{p}<\frac{\epsilon}{|F|}$ on F. Then for $k>K$,

$$
\begin{aligned}
\int\left|f-f_{k}\right||g| & =\int_{B_{N}(\mathbf{0})^{c}}\left|f-f_{k}\right||g|+\int_{F}\left|f-f_{k}\right||g|+\int_{B_{N}(\mathbf{0})-F}\left|f-f_{k}\right||g| \\
& \leq 2 M \epsilon^{1 / p^{\prime}}+\epsilon^{1 / p}\|g\|_{p^{\prime}}+2 M \epsilon^{1 / p^{\prime}}
\end{aligned}
$$

8.14a

Straight forward calculation.

8.15

We note $\int_{0}^{2 \pi} \cos ^{2}(k x) d x=\pi$. So for $f \in L^{2}$ the Fourier coefficient is $\sqrt{\frac{1}{\pi}} \int f \cos (k x) d x$. However the sum of square of the sequence is finite, thus $\int f \cos (k x) d x \rightarrow 0$. For $f \in L^{1}$, we can approximate by compactly supported continuous f_{n}, which have the above property. Since $\cos (k x)$ is bounded, we have $\int|\cos (k x)|\left|f-f_{n}\right| \rightarrow 0$. So $\int f \cos (k x) \rightarrow 0$.

