
Homework 9 Hints
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f measurable so {x : f(x) > a} measurable for any a. Since {x : g(x) > a} differs from {x : f(x) > a}
by a set of measure zero and the measure space is complete, {x : g(x) > a} is also measurable. For
incomplete measure space, it is not necessarily true.
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We note by the definition we will consider sets differ by a zero measure set as equivalent. Since some
of the properties are seen immediately, we just prove the following property to show (S ,Σ, µ) is a
metric space.
(E1∆E3) = (E1−E3)∪(E3−E1) ⊂ (E1−E2)∪(E2−E3)∪(E3−E2)∪(E2−E1) = (E1∆E2)∪(E2∆E3).
So d(E1, E3) ≤ d(E1, E2) + d(E2, E3).
Lp ⇒ Σ is not hard to show once we identify a Σ measurable set with its characteristic function.
Σ⇒ Lp can be shown by considering functions in Lp which are rational linear combination of char-
acteristic functions of a countable set of measurable sets which is dense in Σ. We can show the set of
such functions is dense in simple functions, then in Lp.
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Consider the set function φ(E) =

∫
E
fdµ, E ∈ Σ0, since f is integrable, so φ(E) is absolutely

continuous w.r.t. µ defined on Σ0. Applying the Radon-Nikodym theorem, we get the existence and
uniqueness of f0 with the property

∫
E
fdµ =

∫
E
fdµ, E ∈ Σ0. Then we get the result for g simple

functions and then for integrable measurable functions.
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