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Abstract. — Let E be an elliptic curve defined over a number field F and K/F a quadratic
extension. For a point P ∈ E(F) that is a local trace for every completion of K/F, we find
necessary and sufficient conditions for P to lie in the image of the global trace map. These
conditions can then be used to determine whether a quadratic twist of E, as a genus one curve,
has rational points. In the case of quadratic twists of genus one modular curves X0(N) with
squarefree N , the existence of rational points corresponds to the existence of Q-curves of degree
N defined over K.
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Introduction

Let F be a number field, E/F an elliptic curve of conductor N , and K/F a quadratic

extension. We want to find conditions which determine whether a point in E(F) lies in the

image of the global trace map trK/F : E(K)→ E(F). An obvious necessary condition is that

the point must be a local trace at every completion of F. Hence, for every prime v of F we

consider the restriction map resv : E(F)→ E(Fv) and we investigate the following question.
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Question. — Let P ∈ E(F) such that resv(P ) lies in the image of the local trace maps

trKν/Fv : E(Kν) → E(Fv) for every prime v of F, where ν is a prime of K lying over v. Is

the point P in the image of the global trace map trK/F?

Consider the map

(1) ψ : E(F)/trK/FE(K) −→
∏
v

E(Fv)/trKν/FvE(Kν).

The kernel of ψ measures the failure of the local-global trace principle. For a subset S of

E(F), we say that the local-global trace principle holds for S if every point P ∈ S is a global

trace if and only if it is local trace for every prime v of F, i.e. if the kernel of ψ intersects

trivially with S.

In Proposition 1.1 we see that being a local trace for every prime is in fact a condition

at only finitely many primes, specifically a subset of the primes that ramify in K/F and

non-split prime divisors of N . However, in Proposition 1.7 and Proposition 1.12 we find that

a point P ∈ E(F) that is a local trace at every prime, is also a global trace only when either

E(F)2 6= E(K)2 or points in E(F)\
Ä
2E(F)+E(F)2

ä
and in Ed(F)\2Ed(F) give rise to a point

that is 2-divisible in E(K), here Ed denotes the quadratic twist of E with respect to K/F.

Note that global 2-divisibility is equivalent to local 2-divisibility at almost all primes [DZ].

The motivation for considering these trace questions lies in the study of rational points on

quadratic twists of the underlying genus one curve E. In Section 2, we consider the quadratic

twist of E with respect to K/F and a point P ∈ E(F). We show that this twisted genus one

curve has a F-rational (resp. Fv-rational) point if and only if P is a global trace (resp. local

trace). Therefore, our analysis of local to global trace questions provides conditions under

which a quadratic twist of the genus one curve E with local points for every completion of F

is in fact an elliptic curve over F, see Theorem 2.4. Moreover, in the special case of genus one

modular curves X0(N) with squarefree N , rational points of the twists of X0(N) correspond

to quadratic Q-curves of degree N , see [El]. Hence, by verifying finitely many 2-divisibility

conditions we can determine whether Q-curves of degree N exists over a quadratic extension

K of Q.

Notation. — We will use the following notation:

– Ed denotes the quadratic twist of the elliptic curve E with respect to K = F(
√
d).

– for an abelian group M , we denote by Mn the n-torsion subgroup of M .
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– for a Galois extension L/F and a Z[Gal(L/F)]-module M , we use H1(L/F,M) to denote

the Galois cohomology group H1(Gal(L/F),M); in addition, H1(F/F),M) is denoted

by H1(F,M).

1. Local to global trace questions

We start by analyzing the condition of being a local trace.

Proposition 1.1. — Let v be a prime of F and ν be a prime of K lying above v. Then the

image of the map trKν/Fv : E(Kν)→ E(Fv) equals

i) E(Fv) if at least one of the following conditions holds:

(a) v splits in K/F;

(b) v is inert in K/F and E has good reduction at v;

(c) v is inert in K/F, E has multiplicative reduction at v, and ordv(∆E) is odd where

∆E is the discriminant of some model of E;

(d) v - 2∞ and E(Fv)[2] = 0;

(e) v is real and (∆E)v < 0.

ii) 2E(Fv) if v - 2N and v ramifies in K/F.

Proof. — The assertion (i) is Lemma 2.10 of [MR] and assertion (ii) for finite primes is

Lemma 2.11 of [MR]. We now consider real infinite primes v of F which are ramified in K.

In this case, Kν = C and Fv = R. We know that there exist q ∈ R∗ such that

E(C) ' C∗/qZ and E(R) ' R∗/qZ.

Since under the above identifications the trace map trKν/Fv is induced by the norm map, we

find that P ∈ E(R) is a local trace if and only if it is 2-divisible in E(R). Note that q < 0

corresponds to (∆E)v < 0 and in that case E(R) = 2E(R). This concludes the proof of the

proposition.

The following immediate implication of the above proposition transforms question of

whether a point is a local trace at all primes into a question about local divisibility by

2 at a finite set of primes for a subset of quadratic extensions K/F.

Corollary 1.2. — Let Q be the set of primes that are ramified in K/F. If all primes

dividing 2N split in K/F, then the subgroup of elements of E(F) that are local traces at all
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primes equals the kernel of the map

E(F) −→
∏
v∈Q

E(Fv)/2E(Fv).

Remark 1.3. — Let L be a field of characteristic distinct from 2, 3 and containing F , Fv,

or the residue field of Fv for some good reduction prime v. If E is given by the equation

y2 = (x− α1)(x− α2)(x− α3) where αi ∈ L, then a point P = (xP , yP ) ∈ Ed(L) is divisible

by 2 in E(L) if and only if xP − αi ∈ L(αi)
2 for i = 1, 2, 3. This follows from Theorem 4.2

of [Kn] and a simple analysis of the action of Gal
Ä
L(E2)/L

ä
on the set P/2 + E(L)2, here

Gal
Ä
L(E2)/L

ä
:= ker

Ä
Gal(L/L)→ Aut(E(L)2)

ä
.

Moreover, for finite primes v of F coprime to 2N we have that

E(Fv)/2E(Fv) ' E(kv)/2E(kv)

where kv denotes the residue field of Fv. Hence, under the conditions of the above corollary

verifying whether a point of E(F) is a local trace at all primes involves only a finite number

of simple computations over finite fields and potentially R.

Consider the isomorphism ι : E(K) → Ed(K). Using the short Weierstrass models y2 =

x3+ax+b for both E and Ed we have ι(x, y) = (xd, yd
√
d). Let τ ∈ Gal(F/F) be a generator

of Gal(K/F) and observe that

(2) ι(τP ) = −τι(P ) for all P ∈ E(K).

Lemma 1.4. — The group E(F)/trK/FE(K) is isomorphic to H1(K/F,Ed(K)) under the

map κ̄ induced by

κ : E(F) −→ H1(K/F,Ed(K)),

where κ(P ) ∈ H1(K/F,Ed(K)) such that κ(P )(τ) = ι(P ).

Proof. — We know that

H1(K/F,Ed(K)) '
ker(trK/F : Ed(K)→ Ed(K))

im (τ − 1 : Ed(K)→ Ed(K))

under the map that sends a cocycle c ∈ H1(K/F,Ed(K)) to c(τ).

By (2) we see that

ι(trK/FP ) = (1− τ)ι(P ) and ι((τ − 1)P ) = −trK/Fι(P ).

Consequently, the map ι induces the following isomorphism

ker(τ − 1 : E(K)→ E(K))

im (trK/F : E(K)→ E(K))
'

ker(trK/F : Ed(K)→ Ed(K))

im (τ − 1 : Ed(K)→ Ed(K))
.
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Hence, we have that

H1(K/F,Ed(K)) ' ker(τ − 1 : E(K)→ E(K))

im (trK/F : E(K)→ E(K))

It follows that

H1(K/F,Ed(K)) ' E(F)

trK/FE(K)

under the map κ̄−1 which sends c ∈ H1(K/F,Ed(K)) to ι−1
Ä
c(τ)

ä
.

As in Lemma 1.4, we also have that

(3)
E(Fv)

trKν/FvE(Kν)
' H1(Kν/Fv,E

d(Kν)).

Then the map ψ in (1) can be identified with the following natural map

ψc : H1(K/F,Ed(K))→
∏
v

H1(Kν/Fv,E
d(Kν))

and kerψ ' kerψc under κ̄. Consequently we see that the kernel of ψ fits into the following

diagram where each row and column is exact:

0 0 0
↓ ↓ ↓

0 → kerψ → H1(K/F,Ed(K)) → ∏
v H1(Kν/Fv,E

d(Kν))
↓ ↓ ↓

0 → X(Ed/F) → H1(F,Ed) → ∏
v H1(Fv,E

d)
↓ ↓ ↓

0 → X(Ed/K) → H1(K,Ed) → ∏
ν H1(Kν ,E

d)

Then since [K : F] = 2 we see that kerψ is a subgroup of X(Ed/F)2 and we have the

following result.

Proposition 1.5. — The group kerψ is isomorphic to the kernel of the restriction map

X(Ed/F)2 −→ X(Ed/K)2.
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We now consider the following diagram:

0

kerψ
?

0 - Ed(F)/2Ed(F) - H1
Sel(F,E

d
2) - X(Ed/F)2

?
- 0

0 -
Å

Ed(K)/2Ed(K)
ãGal(K/F)

π1 ?

- H1
Sel(K,E

d
2)

Gal(K/F)

π2
?

- X(Ed/K)
Gal(K/F)
2

?

Using the snake lemma we find the exact sequence

(4) 0 −→ kerπ1 −→ kerπ2 −→ kerψ
δ−→ cokerπ1.

Observe that

kerπ2 = ker
Å

H1(K/F,Ed(K)2) −→
∏
v

H1(Kν/Fv,E
d(Kν))

ã
which has the following immediate implication:

(5) ker π2 ' ker

Ç
E(F)2/trK/FE(K)2 −→

∏
v

E(Fv)/trKν/FvE(Kν)

å
.

Lemma 1.6. — The intersection of κ
Ä
E(F)

ä
with the image of H1(K/F,Ed(K)2) equals

κ
Ä
E(F)2

ä
.

Proof. — Let P ∈ E(F) such that

κ(P ) ∈ im
Ä
H1(K/F,Ed(K)2)→ H1(K/F,Ed(K))

ä
.

It follows that P = (τ + 1)Q + R where R ∈ E(K)2 and Q ∈ E(K). Consequently, we have

that R ∈ E(F)2 and

κ(P ) = κ(R) ∈ κ
Ä
E(F)2

ä
.

Observe that the exactness of (4) and Lemma 1.6 implies that the kernel of the map δ lies

in kerψ ∩ κ(E(F)2). Then by (5) we have that the following exact sequence:

(6) 0 −→ kerπ1 −→ kerπ2 −→ kerψ ∩ κ(E(F)2) −→ 0.

Proposition 1.7. — Let E/F be an elliptic curve with non-trivial F-rational 2-torsion.

Assume that
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i) if E(F)2 ' Z/2Z× Z/2Z then K/F is ramified at some infinite prime;

ii) a non-trivial element of E(F)2 lies in the image of the local trace map for every prime

of F.

Then the local-global trace principle holds for E(F)2 if and only if

E(K)2 6= E(F)2 or 2Ed(F) 6= Ed(F) ∩ 2Ed(K).

Proof. — We will show that E(F)2 intersects the kernel of ψ trivially if and only if at least

one of the above two conditions holds. Our assumptions and Proposition 1.1(ii) imply that

ker
Ä
E(F)2 →

∏
v

E(Fv)/trKν/FvE(Kν)
ä
' Z/2Z.

Then by (5) we have that ker π2 is either trivial or isomorphic to Z/2Z .

If kerπ2 is trivial then kerψ ∩ E(F)2 = 0. By (5) and assumption (ii) we know that

kerπ2 = 0 if and only if tr(E(K)2) 6= 0 which is equivalent to E(K)2 6= E(F)2.

If kerπ2 ' Z/2Z then kerψ ∩ E(F)2 = 0 if and only if the map π1 is not injective which

is equivalent to

2Ed(F) 6= Ed(F) ∩ 2Ed(K).

This concludes the proof of the proposition.

Note that when applying the above result we check the 2-divisibility of points of Ed(F) in

Ed(K) by making use of Remark 1.3.

Example 1.8. — Consider the elliptic curve E : y2 + xy + y = x3 − 2731x− 55146 (1) and

K = Q(
√

473). We know that

E(Q) ' Z/2Z and Ed(Q) ' Z/2Z× Z× Z

where d = 473. We now show that the local-global trace principle holds for E(Q)2.

We will start by checking whether the non-trivial point T ∈ E(Q)2 is a local trace for every

prime of Q. The conductor of E/Q equals 14 and the primes 2, 7 split in K/Q. Consequently,

by Corollary 1.2 and Remark 1.3 it is enough to determine whether T ∈ 2E(F`) for the primes

` = 11, 43 (the prime divisors of d = 473). Using MAGMA we find that T ∈ 2E(F11) and

T ∈ 2E(F43). It follows that T lies in the image of local trace map for every prime of Q.

In addition, we find R ∈ Ed(Q) \
Ä
2Ed(Q) + Ed(Q)2

ä
such that R+ ι(T ) ∈ 2Ed(K). Hence,

Proposition 1.7 implies that T is a global trace and the local-global trace principle holds for

E(Q)2.

(1)The Cremona label for this elliptic curve is 14a5.
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Example 1.9. — Consider the elliptic curve E : y2 + xy + y = x3 − 12x − 16 (2) and

K = Q(
√

73). We have that

E(Q) ' Z/2Z× Z and Ed(Q) ' Z/2Z× Z

where d = 73. The conductor of E/Q equals 82 = 2 · 41 and 2, 41 split in K/Q.

Using Corollary 1.2 and Remark 1.3 we verify that the non-trivial point T ∈ E(Q)2 lies in

the image of local trace map for every prime of Q. Now we choose R ∈ Ed(Q) which together

with ι(T ) generates Ed(Q). We verify that R and R+ ι(T ) are not in 2Ed(K). Since we also

have that E(K)2 = E(Q)2, by Proposition 1.7 we deduce that T is not a global trace and

consequently the local-global trace principle fails for E(Q)2.

Example 1.10. — Consider the elliptic curve E : y2 = x3+x2−2x (3) and K = Q(
√
−407).

We know that

E(Q) ' Z/2Z× Z/2Z and Ed(Q) ' Z/2Z× Z/2Z× Z

where d = −407. Observe that the conductor of E/Q equals 96, and the primes 2, 3 split in

K/Q.

Using Corollary 1.2 and Remark 1.3 we verify that the non-trivial point T = (1, 0) ∈ E(Q)2

is a local trace for every prime of Q. Now we choose R ∈ Ed(Q) such that it generates

Ed(Q)/Ed(Q)2 and verify that
Ä
R + Ed(Q)2

ä
∩ 2Ed(K) = ∅. Hence, Proposition 1.7 implies

that T is not a global trace and the local-global trace principle fails for E(Q)2.

In order to address local to global trace questions about E(F) \
Ä
2E(F) + E(F)2

ä
, we need

to understand the map δ : kerψ → cokerπ1 in (4). We start by analyzing cokerπ1. Consider

the map

Ed(K)/2Ed(K)
τ̃+1−→ Ed(F)/2Ed(F)

induced by P 7→ (τ+1)P . The kernel of τ̃ + 1 consists of P ∈ Ed(K) such that P = R+ι(Q),

where R ∈ Ed(F) and Q ∈ E(F) are uniquely determined modulo E(F)2. Consequently, the

map

ι̃ : Ed(F)⊕ E(F)/E(F)2 −→
Å

Ed(K)/2Ed(K)
ãGal(K/F)

,

where ι̃(R,Q) := R + ι(Q) + 2Ed(K) for R ∈ Ed(F) and Q ∈ E(F), is surjective. It follows

that

cokerπ1 ' ι̃
Ä
E(F)

ä
/ι̃
Ä
Ed(F)

ä
(2)The Cremona label for this elliptic curve is 82a2.
(3)The Cremona label for this elliptic curve is 96a1.
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and in particular the map ι induces a surjection of E(F)/
Ä
2E(F) + E(F)2

ä
onto cokerπ1.

Let P ∈ E(F) \ E(F)2. Consider S = ι(P ) ∈ Ed(K) and its corresponding cocycle bS ∈
H1

Sel(K,E
d
2)

Gal(K/F). By fixing S−τS
2

= S ∈ Ed(K) we define the cocycle cS ∈ H1(F,Ed
2) as

follows

cS(σ) = σ(S/2)− S/2− S − σS
2

for all σ ∈ Gal(F/F).

Observe that cS maps to bS under the restriction map

H1(F,Ed
2) −→ H1(K,Ed

2)
Gal(K/F)

and that the other choices of S−τS
2
∈ Ed(K) correspond to the other elements of the coset

cS + H1(K/F,Ed(K)2).

The image of cS in H1(F,Ed) equals dS ∈ H1(K/F,Ed(K)) where dS(τ) = S. Note that dS

is uniquely determined only as an element of

H1(K/F,Ed(K))/im
Ä
H1(K/F,Ed(K)2)→ H1(K/F,Ed(K))

ä
,

and dS ∈ im
Ä
H1(K/F,Ed(K)2) → H1(K/F,Ed(K))

ä
if and only if S ∈ 2Ed(K) + Ed(F). By

(3) the following lemma is immediate.

Lemma 1.11. — Let P ∈ E(F) \ E(F)2. Then

dι(P ) ∈ X(Ed/F) + im
Ä
H1(K/F,Ed(K)2)→ H1(F,Ed)

ä
.

if and only if the kernel of the map

E(F)→
∏
v

E(Fv)/trKν/FvE(Kν)

intersects non-trivially with the coset P + E(F)2.

As a consequence we now see that δ : kerψ → cokerπ1 maps P 7→ ι̃(P ) and we have the

following result.

Proposition 1.12. — Let E/F be an elliptic curve such that the local-global trace principle

holds for E(F)2, and P ∈ E(F) be a local trace for all primes of F. Then P is a global trace

if and only if ι(P ) ∈ 2Ed(K) + Ed(F).

Proof. — Since P is a local trace at all primes we know that P ∈ kerψ. By (4) and (6)

we see that the assumption that the local-global trace principle holds for E(F)2 implies that

the map δ : kerψ → cokerπ1 is injective. Consequently, P is a global trace if and only if

δ(P ) = 0. Since δ(P ) = ι̃(P ) ∈ cokerπ1 it follows that P is a global trace if and only if

ι(P ) ∈ 2Ed(K) + Ed(F).
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Example 1.13. — Consider the elliptic curve E : y2 + xy = x3 + 4x + 1 (4) and K =

Q(
√
−311). Then

E(Q) ' Z/2Z× Z and Ed(Q) ' Z/2Z× Z× Z

where d = −311. Observe that the conductor of E/Q equals 65 and the primes 2, 5, 13 split

in K/Q. We now verify that the local-global trace principle holds for E(Q).

Let T ∈ E(Q)2 and S ∈ E(Q) such that E(Q) = 〈T, S〉. Since T, S ∈ 2E(R) and T, S ∈
2E(F311), by Corollary 1.2 and Remark 1.3 we know that T and S are local traces for all

primes of Q.

Then, after identifying generators of Ed(Q)/2Ed(Q), we find P1 ∈ Ed(Q) \
Ä
2Ed(Q) +

Ed(Q)2
ä

such that P1 ∈ 2Ed(K), which by Proposition 1.7 implies that T is a global trace.

Therefore, the local-global trace condition holds for E(Q)2. Moreover, we also find P2 ∈
Ed(Q) \

Ä
2Ed(Q) + Ed(Q)2

ä
such that ι(S) +P2 is 2-divisible in Ed(K). Then by Proposition

1.12 we deduce that S is a also global trace. Hence, the local-global trace principle holds for

E(Q).

2. Twists of genus one curves

Let (E, O) be an elliptic curve over F where O denotes the distinguished element of E(F).

In this section we study quadratic twists of the genus one curve E. Consider Aut(E) the

automorphism group of E viewed as a genus one curve. We know that

Aut(E) ' Aut(E, O) n E(F)

where Aut(E, O) is the automorphism group of E viewed as an elliptic curve. Therefore, if

E does not have complex multiplication, a generic element of Aut(E) is of the form (±1, S)

and sends a point X ∈ E(F) to ±X + S ∈ E(F).

For any quadratic extension K = F(
√
d) and any point S ∈ E(F), we consider ζK,S ∈

H1
Ä
Gal(F̄/F),Aut(E)

ä
defined by the following cocycle:

ζK,S(σ) =

(−1, S) if σ(
√
d) = −

√
d

(1, O) otherwise.

Let EK,S denote the twist of E corresponding to ζK,S [Si, §X.2]. The twisted curve, EK,S is

a genus one curve defined over F and it is isomorphic to E over K. We refer to EK,S as the

twist of E with respect to K/F and S ∈ E(F).

(4)The Cremona label for this elliptic curve is 65a2.
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Lemma 2.1. — The group EK,S(F) of F-rational points of EK,S is isomorphic to the fol-

lowing subgroup of E(F):

{P ∈ E(F) | ζK,S(σ)
Ä
σ(P )

ä
= P for all σ ∈ Gal(F/F)}.

Proof. — By Theorem 2.2 [Si, §X.2] we know that there is an isomorphism θ : EK,S → E

such that θσ = ζK,S(σ)θ, here θσ := σθσ−1. It follows that

(7) θσ =

(−1, S)σθ if σ(
√
d) = −

√
d

σθ otherwise.

Let R ∈ EK,S(F) and P ∈ E(F) such that P = θ(R). Note that since θ is an isomorphism

R ∈ EK,S(F) if and only if θ(σR) = P for every σ ∈ Gal(F/F). By (7) we see that

θ(σR) = ζK,S(σ)(σP ).

Hence, the map θ gives the following isomorphism:

EK,S(F) ' {P ∈ E(F) | ζK,S(σ)
Ä
σ(P )

ä
= P for all σ ∈ Gal(F/F)}.

We would like to be able to determine whether EK,S is an elliptic curve over F or over Fv

for some prime v of F.

Lemma 2.2. — Let K/F be a quadratic extension, S ∈ E(F), and EK,S/F the corresponding

twist of E. Then

a) EK,S has an F-rational point if and only if S is a global trace.

b) EK,S has a point defined over Fv if and only if S lies in the image of the trace map

trKν/Fv : E(Kν)→ E(Fv), here ν denotes a prime of K above a prime v of F.

Moreover, if EK,S has a point defined over F(resp. over Fv) then EK,S is isomorphic over F

(resp. over Fv) to the quadratic twist Ed.

Remark 2.3. — Note that part (a) of the above lemma follows immediately from Lemma

2.1 but we will proceed to give a different argument that addresses all three statements

simultaneously.

Proof. — We will show that EK,S(F) is nonempty if and only if ζK,S is cohomologous to ζK,O

in which case EK,S is isomorphic over F to the quadratic twist Ed.
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Assume that EK,S(F) is not empty. By Lemma 2.1 it follows that there exists P ∈ E(K)

such that (τ + 1)P = S. Let ϕ = (−1, P ) and observe that

ϕτζK,S(τ) = (−1, τP )(−1, S) = (1, τP − S),

ζK,O(τ)ϕ = (−1, O)(−1, P ) = (1,−P ).

Since −P = τP − S, it follows that ζK,S and ζO are cohomologous.

Conversely, we now assume that ζK,S and ζK,O are cohomologous. Hence, there exists

ϕ = (±1, P ) ∈ Aut(E) such that ϕτζK,S(τ) = ζK,O(τ)ϕ. This implies that (∓1,±S + τP ) =

(∓1,−P ) and hence S = τ(∓P ) + (∓P ) for some P ∈ E(F). For σ ∈ Gal(K/K) we have

that

ϕσζK,S(σ) = (±1, σP )(1, O) = (±1, σP ),

ζK,O(σ)ϕ = (1, O)(±1, P ) = (±1, P ).

Since ϕσ ∗ ζK,S(σ) = ζK,O(σ) ∗ ϕ, it follows that σP = P for all σ ∈ Gal(K/K). Hence,

S = τP ′ + P ′ for some P ′ ∈ E(K). This concludes the proof of part (a).

Part (b) is trivially true if v splits in K/F since EK,S(K) is nonempty, and otherwise it

follows by a local argument that is identical to the one used in the global case.

The above lemma together with Proposition 1.7 and Proposition 1.12 give the following

result.

Theorem 2.4. — Let K/F be a quadratic extension and S ∈ E(F). Assume that the corre-

sponding genus one curve EK,S/F has a local point over Fv for all primes v. Then EK,S(F)

is nonempty if the following holds:

i) if S ∈
Ä
2E(F) + E(F)2

ä
\ 2E(F), then

a) if E(F)2 ' Z/2Z× Z/2Z then K/F is ramified at some infinite prime, and

b) E(K)2 6= E(F)2 or 2Ed(F) 6= Ed(F) ∩ 2Ed(K).

ii) if S ∈ E(F) \
Ä
2E(F) + E(F)2

ä
, then

a) the local-global trace principle holds for E(F)2, and

b) ι(P ) ∈ 2Ed(K) + Ed(F).

The conclusions in the examples described in §1 can now be rephrased as follows:

• in Example 1.8, EK,T (Q) 6= ∅ for K = Q(
√

473) and every T ∈ E(Q)2.

• in Example 1.9, for K = Q(
√

73) and T ∈ E(Q)2 \ {O} we find that EK,T (Qv) 6= ∅ for

every prime v but EK,T has no rational points.
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• in Example 1.10, E(Q)2 ' Z/2Z × Z/2Z and for K = Q(
√
−407) there is a unique

non-trivial T ∈ E(Q)2 such that EK,T (Qv) 6= ∅ for every prime v; however EK,T (Q) = ∅
for every T ∈ E(Q)2 \ {O}.
• in Example 1.13, EK,T (Q) 6= ∅ for K = Q(

√
−311) and every T ∈ E(Q).

One interesting application of the above theorem is in the study of rational points on

twists of genus one modular curves. For K = Q(
√
d), the twist Xd(N) of the modular curve

X0(N) is constructed by Galois descent from X0(N)/K. It is a smooth proper curve over

Q, isomorphic to X0(N) over K but not over Q. The action of τ ∈ Gal(K/Q) on Xd(N)

is ‘twisted’, in particular Q-rational points of Xd(N) are naturally identified with the K-

rational points of X0(N) that are fixed by τ ◦ wN , where wN denotes the Atkin-Lehner

involution. Like X0(N), if N is squarefree the twisted curve Xd(N) is a parameter space

and its Q-rational points correspond to Q-curves of degree N defined over K = Q(
√
d). A

Q-curve of degree N over K = Q(
√
d) is an elliptic curve defined over K which is isogenous

to its Galois conjugate over K via an isogeny φ with ker(φ) ∼= Z/NZ, see Ellenberg’s survey

article [El] for more on Q-curves.

If X0(N) has genus one then wN = (−1, S) ∈ Aut(X0(N)) for some S ∈ X0(N)(Q). There-

fore, given a quadratic field K = Q(
√
d), the corresponding twist Xd(N) equals X0(N)ζK,S .

Hence, for modular curves of genus one, the study of rational points on the twist Xd(N) is

related to trace questions (see Lemma 2.2). The values of squarefree N such that X0(N)

has genus one are: 11, 14, 15, 17, 19, 21. Among these, for N = 11, 19 the group X0(N)(Q) is

cyclic of odd order and hence Xd(N)(Q) 6= ∅ for every d ∈ Q. We will now give one example

of the study of the rational points for a twist of each of the remaining genus one modular

curves.

Example 2.5. — Let E be the modular curve X0(14). We have that E(Q) ' Z/6Z and

w14 = (−1, S) ∈ Aut(X0(14)) for a point S ∈ E(Q) of order 6.

Consider the quadratic field K = Q(
√

17). We know that X17(14)(Qv) 6= ∅ for every prime

v of Q, see [Oz, Theorem 1.1]. Consequently, Lemma 2.2 implies that S is a local trace at

all primes of Q.

Observe that Ed(Q) ' Z/2Z × Z, here d = 17. We find that there exists a point P ∈
Ed(Q) \

Ä
2Ed(Q) + Ed(Q)2

ä
such that P ∈ 2Ed(K). Then by Theorem 2.4(i) we deduce that

EK,S(Q) = X17(14)(Q) 6= ∅ and this implies the existence of a Q-curve of degree 14 defined

over Q(
√

17).
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Example 2.6. — Let E be the modular curve X0(15). Then E(Q) ' Z/2Z × Z/4Z and

w15 = (−1, S) ∈ Aut(X0(15)) for a point S ∈ E(Q) of order 4.

Consider K = Q(
√
−71) and observe that Ed(Q) ' Z/2Z × Z/2Z × Z, here d = −71.

The primes 2, 3, 5 split in K/Q, and we verify that S ∈ 2E(R), and S ∈ 2E(F71). Then

Corollary 1.2 and Remark 1.3 imply that S is a local trace for all primes of Q. Hence,

EK,S(Qv) = X−71(15)(Qv) 6= ∅ for every prime v of Q.

Since K/Q is imaginary, at most one of the non-trivial 2-torsion points of E(Q) can

be a local trace at all primes of Q, see Proposition 1.1. It follows that 2S is that point

and that the local-global trace principle holds for E(Q)2. Then we also find R ∈ Ed(Q) \Ä
2Ed(Q) + Ed(Q)2) such that ι(S) − R ∈ 2Ed(K). Hence, by Theorem 2.4(ii) we deduce

EK,S(Q) = X−71(15)(Q) 6= ∅ and this implies the existence of a Q-curve of degree 15 defined

over Q(
√
−71).

Example 2.7. — Let E be the modular curve X0(17). We have that E(Q) ' Z/4Z and

w17 = (−1, S) ∈ Aut(X0(17)) for a point S ∈ E(Q) of order 4.

Consider K = Q(
√

19) and observe that Ed(Q) ' Z/2Z × Z × Z, here d = 19. We know

that X19(17)(Qv) 6= ∅ for every prime v of Q, see [Oz, Theorem 1.1]. Hence, Lemma 2.2

implies that S is a local trace at all primes of Q.

We then find R ∈ Ed(Q) \
Ä
2Ed(Q) + Ed(Q)2

ä
such that ι(S)−R ∈ 2Ed(K). Since in this

case the local-global trace principle holds trivially for E(Q)2, Theorem 2.4(ii) implies that

EK,S(Q) = X19(17)(Q) 6= ∅. Hence, there exists a Q-curve of degree 17 defined over Q(
√

19).

Example 2.8. — Let E be the modular curve X0(21). Then E(Q) ' Z/2Z × Z/4Z and

w21 = (−1, S) ∈ Aut(X0(21)) for a point S ∈ E(Q) of order 4.

Consider K = Q(
√
−47) and observe that Ed(Q) ' Z/2Z × Z/2Z × Z, here d = −47.

The primes 2, 3, 7 split in K/Q, and we verify that S ∈ 2E(R) and S ∈ 2E(F47). Then

Corollary 1.2 and Remark 1.3 imply that S is a local trace for all primes of Q. Hence,

EK,S(Qv) = X−47(21)(Qv) 6= ∅ for every prime v of Q.

Since K is imaginary, at most one of the non-trivial 2-torsion points can be a local trace

(see Proposition 1.1). It follows that 2S is that point and that the local-global trace principle

holds for E(Q)2. Then we proceed to find R ∈ Ed(Q)\
Ä
2Ed(Q)+Ed(Q)2) such that ι(S)−R ∈

2Ed(K). Hence, by Theorem 2.4(ii) we deduce that EK,S(Q) = X−47(21)(Q) 6= ∅ which

implies the existence of a Q-curve of degree 21 defined over Q(
√
−47).
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