
Lectures on gauge theory and symplectic geometry
TIM PERUTZ

1 What gauge theory has done for us

This lecture presents a classic example of the application of gauge theory to topology.

1.1 4-manifolds

The central differential-geometric feature of oriented 4-manifolds is the splitting of the
2-forms into self-dual (SD) and anti-self-dual (ASD) parts, the +1 and −1 eigenspaces
of the Hodge star operator for a Riemannian metric:

Λ2 = Λ+ ⊕ Λ−.

The basic topological feature of closed, oriented 4-manifolds is the presence of a
non-degenerate, symmetric bilinear form QX on H2(X;Z)/(torsion),

(a, b) 7→ (a ^ b)[X].

The signature of QX —the difference σ(X) = b+(X)− b−(X) between the dimensions
of maximal positive- and negative-definite subspaces—is called the signature of X . It
is invariant under oriented cobordism.

QX has geometric meaning in homology, in de Rham cohomology and in Hodge coho-
mology. Poincaré duality identifies QX with the intersection form on H2(X;Z)/(torsion),
realized geometrically by intersection numbers of embedded oriented surfaces. Under
the de Rham isomorphism H2

dR(X) ∼= H2(X;Z) ⊗ R, the R-linear extension of the
cup-product form corresponds to the wedge product form,

(α, β) 7→
∫

X
α ∧ β.

The g-harmonic 2-forms H2(X) give a complete set of representatives for H2
dR(X). The

splitting into SD/ASD parts commutes with the Hodge Laplacian and hence descends
to harmonic forms:

H2 = H+ ⊕H−.

Here, H2 := Γ(Λ+) ∩H2 is a positive-definite subspace for QX , maximal since it is
complemented by H2

− (defined similarly), a negative-definite subspace.
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1.2 The instanton equation

If A is a connection in a principal bundle P → X over an oriented Riemannian
4-manifold, it has curvature

FA ∈ Ω2(X; ad P) = Γ(Λ2T∗X ⊗ ad P),

a 2-form valued in the adjoint bundle of Lie algebras. The curvature splits into self-dual
and anti-self-dual parts:

FA = F+
A + F−A ,

sections of Λ± ⊗ ad P. An instanton, or ASD connection, is one such that

F+
A = 0.

The group of gauge transformations GP = Aut(P) acts on the connections by pullback,
u · A = u∗A (on covariant derivatives, and thinking of G as a matrix group, du∗A =
dA − u−2(dAu)u). One has Fu∗A = u−1FAu, hence F+

u∗A = u−1F+
A u.

When X is closed, the moduli space M = M(X,P) of instantons modulo GP is finite-
dimensional by elliptic theory. Indeed, the Coulomb gauge-fixing equation

d∗A0
(A− A0) = 0,

contains a unique representative (up to constant gauge transformations) for each gauge
orbit close to [A0] in a natural L2 metric. The instanton and Coulomb equations jointly
linearize to the operator

δA = d∗A + d+
A : Ω1 → Ω0 ⊕ Ω+.

This linear operator is elliptic, hence Fredholm (finite-dimensional kernel and coker-
nel). It has a certain index

ind(δA) = dim ker δA − dim coker δA.

If M(X,P) is cut out transversely [A], that is, δA is surjective, then M(X,P) is locally
modelled on ker δA/stabG(A), a quotient of a vector space of finite dimension ind δA

by the linear action of a group.

Example 1.1 Suppose that b+(X) = 0. Then, for any metric, one has H2 = H− .
Suppose that P is a principal U(1)-bundle. Let A0 be a connection, ξ a 1-form, and
A = A0 + iξ . Then FA = FA0 + dξ . So we can represent any closed form in the class
[FA0] = −2πc1(P) as FA . In particular, we can choose A so that FA is harmonic. Then
F+

A = 0, so A is an instanton (called an abelian instanton, because U(1) is abelian).
If b1(X) = 0, [A] will be the unique gauge-orbit of instantons in P.
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1.3 Donaldson’s diagonalizability theorem

Donaldson theory extracts topological information about X from the moduli spaces of
instantons. Without further ado, let’s give a classic example, historically the first and
still perhaps the most beautiful.

Theorem 1.2 (Donaldson) Let X be a closed, oriented, simply connected 4-manifold
with negative-definite intersection form QX . Then there is a basis for H2(X;Z) in which
QX is represented by the matrix −I .

Sketch proof. Fix a metric g on X , and an SU(2)-bundle P→ X . Let E be the asso-
ciated C2 -bundle, and choose P so that c2(E)[X] = 1. We consider ASD connections
A in P. Let M be the moduli space of ASD connections modulo the action of the group
of gauge transformations G = GP .

For each class c ∈ H2(X;Z) with c2[X] = −1, we can construct an element of M as
follows. Let L → X be a line bundle with c1(L) = c. One has E ∼= L ⊕ L∗ , since by
the Whitney sum formula, c1(L ⊕ L∗) = c − c = 0 and c2(L ⊕ L∗) = c1(L)c1(L∗) =
−c2 = 1. We saw earlier that L carries a unique gauge-orbit of abelian instantons B.
Under the isomorphism E ∼= L⊕ L∗ , the connection B⊕ B∗ is an ASD connection in
E . The ASD connections we obtain this way are reducible, in that they are stabilized
by a non-trivial group of constant gauge transformations (a copy of U(1) in G). We
have constructed NX of them, where NX is the number of pairs ±c where c ∈ H2(X;Z)
satisfies c2 = −1.

One shows, using the hypothesis that π1(X) = {1}, that the remaining ASD connec-
tions are irreducible (stabilized only by {±1} ⊂ G). For generic g, the subspace
M∗ ⊂ M of irreducibles is a smooth, orientable manifold; its dimension is 5 (index
theory). Near a reducible point, M is modeled on C3/U(1) (action of U(1) ⊂ C by
scalar multiplication), the cone on CP2 .

For any [A] ∈ M , one has by Chern–Weil theory and the ASD equation,

1
8π2

∫
X
|FA|2 d vol =

1
8π2

∫
X

tr F2
A = c2(E)[X] = 1.

The space M is not compact, but Uhlenbeck understood that the only source of non-
compactness is that the measure |FA|2 can concentrate in a very small ball Bε . A very
small ball is approximately isometric to standard R4 , hence conformally approximately
equivalent to S4\{pt.}. The concentrated instantons approximate instantons in a bundle
with c2 = 1 over S4 , and in particular, have 1

8π2

∫
Bε
|FA|2 d vol ≈ 1. This means that

concentration can occur near only one point. The concentrated instantons, those for
which a proportion of at least 1 − δ of the measure 1

8π2 |FA|2 is concentrated in a
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ball of radius ε, form an open subset Mconc ∼= X × (0, δ) with compact complement.
Donaldson proves that Mconc ∼= X × (0, δ) by a diffeomorphism that measures the
center and degree of concentration of these instantons. In particular, M is non-empty
even when NX = 0.

By slicing off neighbourhoods of the singular points represented by the reducibles, one
obtains from M a compact, oriented cobordism from X to a disjoint union of N copies
of CP2 (with some orientations). From the cobordism-invariance of signature, one
sees that −b2(X) = σ(X) =

∑NX
j=1 εj , where εj = ±1 is the signature of CP2 with one

or other orientation. Hence NX ≥ b2(X). But now an easy algebraic lemma tells us
that a negative-definite unimodular lattice of rank r , with at least r pairs ±c such that
c2 = −1, has a basis in which its matrix is −I .

1.4 Notes

(1.1.) Basic information about 4-dimensional topology can be found in chapter 1 of
Donaldson and Kronheimer’s book [DK].

(1.2.) See [DK], chapter 2. The standard fact that a first-order elliptic operator D over
a compact manifold is Fredholm can be proved as follows (cf. e.g. [Wel]). One shows
that D satisfies estimates

‖u‖L2
k+1
≤ Ck(‖Du‖L2

k
+ ‖u‖L2),

where ‖u‖L2
k

=
∑k

j=0 ‖u(j)‖L2 and ‖u‖L2 is the L2 norm with respect to a Riemannian
metric. Solutions of Du = 0 with ‖u‖L2 = 1 are therefore uniformly bounded in L2

k
for any k , hence also in Ck by the Sobolev embedding theorem. The Arzela–Ascoli
theorem then implies that the L2 -unit ball in ker D is sequentially compact, hence that
ker D is finite-dimensional. The same argument applies to the formal adjoint operator
D∗ , and ker D∗ ∼= (im D)⊥ , hence dim coker(D) <∞.

(1.3). The proof of Donaldson’s diagonalizability theorem is from [Don1]. There is
an efficient proof in Seiberg–Witten theory, which does not require the hypothesis of
simple connectivity [Nic].
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