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3 The Seiberg–Witten equations and symplectic geometry

3.1 The SW equations on symplectic 4-manifolds

On a symplectic 4-manifold (X, ω), equipped with a compatible almost complex struc-
ture J , Spinc -structures correspond to complex line bundles. Given a line bundle
L→ X , construct a Spinc -structure s as follows. Let

S+ = L⊗ (1⊕ Λ0,2), S− = L⊗ Λ0,1.

If B is a U(1)-connection in L , one has a Cauchy–Riemann operator

1√
2

(∂B + ∂
∗
B) : Γ(S+)→ Γ(S−).

The symbol ρ of this operator defines a Clifford multiplication T∗X → Hom(S+,S−),
defining the Spinc -structure s. The operator DB = 1√

2
(∂B + ∂

∗
B) then becomes the

Dirac operator for the Clifford connection induced by B.

We write positive spinors as φ = (α, β). We also note that

Λ+ ⊗ C = Cω ⊕ Λ0,2.

Following Taubes, we consider the perturbation

η = τ 1/2ω.

The equations become

∂Bα = −∂∗Bβ(1)

F02
B = ᾱβ(2)

iF11
B · ω = |β|2 − |α|2 + τ 2.(3)

When L is trivial, these equations have a trivial solution: take B to be the trivial
connection, β = 0, and α ≡ τ . We will call this the canonical monopole.
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Theorem 3.1 (Taubes) When L ∼= 1 and τ � 0, the canonical monopole is the only
one, up to gauge.

The proof is a deft integration by parts invoking the Weitzenböck formula for ∂B .

(3.1) Taubes’s result about the canonical monopole is from [Tau]; it is explained clearly
in [Don2].

3.2 Σ× C

Let’s specialize to Σ × R2 , taking L , the metric, and the symplectic form ω to be
pulled back from Σ. Then¶

S+ ∼= Λ0,∗(Σ,L) ∼= S−.

If we take (B, α, β) also to be pullbacks from Σ, the equations read

∂Bα = −∂∗Bβ(4)

ᾱβ = 0(5)

iFB = (|β|2 − |α|2 + τ )ω.(6)

Either β = 0 or α = 0; the former implies that 2πd ≥
∫

Σ τα , the latter the reverse
(≤) inequality. If β = 0 we obtain the τ -vortex equations in L . If α = 0, we get
what are essentially the (2g − 2 − τ )-vortex equations in the Serre-dual line bundle
KΣ ⊗ L∗ .

Remark Suppose one considers monopoles on Σ × C which vary slowly in the C-
coordinate (an ‘adiabatic limit’). These are well approximated as holomorphic maps
C→ Vor(Σ,L).

3.3 Monopoles localize on holomorphic curves

Suppose that (An, αn, βn) is sequence of rnω -monopoles, where rn → ∞. The zero
set α−1

n (0) is a surface in X , Poincaré dual to c1(L).

A deep analysis, due to Taubes, shows that, after passing to a subsequence,

• α−1
n (0) converges (as a point set) to a J -holomorphic curve C .

• Everything localizes along C . For instance, FAn converges (as a current) to the
Dirac-delta-current along C .

• |βn|2 and τ − |αn|2 are bounded by c1e−c2dist(x,C)/τ .
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Monopoles from holomorphic curves

If we are given an embedded holomorphic curve C ⊂ X , we can construct approximate
monopoles, supported in a tubular neighborhood of near C . We take a holomorphic
section of Symd(NC), convert it to a family of vortices on the normal planes of C , and
cut off using a bump function.

Taubes proves using the implicit function theorem that these approximate monopoles
are close to true monopoles.

3.4 Summary

Solutions to the vortex equations in a line bundle L → Σ, modulo gauge, form a
complex manifold which is identified with Symdeg(L)(Σ) by the map [A, φ] 7→ φ−1(0).
Translation-invariant SW monopoles on Σ × C are identified with vortices; slowly-
varying vortices correspond to holomorphic maps from C to the vortex moduli space.
On a symplectic 4-manifold, there is just one solution to SW in the canonical Spinc -
structure. Solutions to SW (deformed by high multiples of the symplectic form) localize
on pseudo-holomorphic curves; the unique solution for the canonical Spinc -structure
is the empty curve. Conversely, one can obtain monopoles from pseudo-holomorphic
curves by applying the implicit function theorem to approximate solutions which are
given, in a tubular neighbourhood of the curve, by holomorphic multisections of a
bundle of vortex moduli spaces associated with the normal bundle.

3.5 Monopole invariants for closed 4-manifolds

The configuration space. Let (X, s) be a closed 4-manifold with a Spinc -structure.
One has a space C(X, s) of SW configurations (A, φ): here A is a Clifford connection
in S+ , and φ ∈ Γ(S+) is a positive spinor. The gauge group G = C∞(X,U(1)) acts
on C = C(X, s) with quotient B. The stabilizer of (A, φ) is U(1) if φ = 0 (in which
case (A, φ) is called reducible) and is trivial otherwise (call (A, φ) irreducible). We
write C∗ for the irreducible connections, and B∗ for the free quotient C∗/G. For any
x ∈ X , the ‘based gauge group’, Gx ⊂ G, the subgroup of maps X → U(1) sending x
to 1, acts freely on C, and C/Gx has a residual action of U(1).

Proposition 3.2 Assume b1(X) = 0. Then there is an S1 -equivariant deformation
retraction C∗/Gx → {0}×S(H) to the unit sphere in H = Γ(S+). Hence B∗ ' P(H).
One has H∗(B∗) ∼= Z[U]; the generator U ∈ H2 is the class c1(Lx), where Lx → C∗

is the S1 -bundle C∗/Gx → B∗ .
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Proof Let A0 be a reference connection in Λ2S. An arbitrary connection is then
A = A0 + ia, where a ∈ Ω1

X . By the Hodge theorem, Ω1
X = im d ⊕ im d∗ . Since

H1(X) = 0, the group of gauge transformations is path connected, and every gauge
transformation u has a logarithm: u = exp(iξ). The gauge action on connections is
u · A = A − 2u−1du = A − idξ . Hence, for every connection A there is a unique
based gauge transformation uA ∈ Gx such that uA · A ∈ A0 + i im d∗ . Thus C∗/Gx is
equivariantly homeomorphic to im d∗×(H\{0}) with the S1 -action t ·(a, φ) = (a, tφ).
From this the result is easy.

The moduli space. The monopole moduli space M(g, η) = M(X, s; g, η) ⊂ B

depends on the Riemannian metric and the closed 2-form η .

Proposition 3.3 If b+(X) > 0 then for generic pairs (g, η) of metric and closed
2-form, one has M(g, η) ⊂ B∗ . If b+(X) > 1 then this holds for generic 1-parameter
families of metrics.

Proof M(g, η) intersects the locus of reducible pairs [A, φ] = [A, 0] where (iFA −
η)+ = 0. But iFA − η represents the class 2πc1(S+) − [η], and so [iFA − η]+ ∈
H2(X) = H2

g(X) represents the component of [iFA − η] in the SD subspace H+
g . The

monopole equation says that [iFA − η] ∈ H−g .

The map from {metrics} to the Grassmannian of Grb−(X)H2(X), g 7→ H−g , can be
shown to be a submersion. Hence, if b+ > 0, the locus of metrics g such that H−g
includes 2πc1(S+) is a codimension 1 submanifold.

Theorem 3.4 (1) The space M(η) is compact.

(2) Generic pairs (g, η) are regular in the sense that M(g, η) ⊂ B∗ with M(η) cut
out transversely by its defining equations. In this case, M(g, η) has the structure
of a smooth manifold of dimension

d(s) = indR(d+ + d∗) + indR DA = (1− b1 + b+) +
1
4

(c1(S)2[X]− σ).

(3) A ‘homology orientation’—an orientation for H+
g ⊕ H1(X;R)—induces an

orientation for M(g, η).

Clause (2) is typical of elliptic problems. The index formula uses Hodge theory and the
index theorem. (3) is not unusual. The compactness clause (1) is the Seiberg–Witten
miracle. It depends critically on the special shape of the equations—for instance, on
the sign of the 0th-order quadratic term (φ∗ ⊗ φ)0 .
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Definition 3.5 Assume b+(X) > 1, and take (g, η) generic in the sense of the theorem.
Define the Seiberg–Witten invariant

SW(X, s) ∈ Hd(s)(B∗), SW(X, s) = [M(g, η)].

Note that Hd(s)(B∗) = Z if d(s) is even, and Hd(s)(B∗) = 0 otherwise.

Corollary 3.6 When b+ > 1, SW(X, s) is an invariant of X (except that its sign
depends on a homology orientation).
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