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4 The monopole TQFT

4.1 The monopole equations in 3 dimensions

There is a version of the Seiberg–Witten equations for a Riemannian 3-manifold Y .
A Spinc -structure t on Y consists of a rank 2 hermitian vector bundle S → Y (the
spinor bundle) and an oriented isometry ρ : T∗Y → su(S), where su(S) has the metric
|a|2 = − tr a2 . There’s a notion of a Clifford connection B in S, and each of these has
an associated Dirac operator

DB : Γ(S)→ Γ(S)

The Clifford multiplication ρ extends naturally to a map

ρ : Λ∗Y ⊗ C→ End(S).

The 3-dimensional Seiberg–Witten equations for a pair (B, ψ) of Clifford connection
and spinor ψ ∈ Γ(S) read

(1) DBψ = 0,
1
2
ρ(FBt − iη)− (ψ∗ ⊗ ψ)0 = 0.

Here η is a chosen closed 2-form. We also impose a gauge-fixing condition

d∗(Bt − Bt
0) = 0.

The linearized equations define an operator iΩ1 ⊕ Γ(S) → iΩ0 ⊕ iΩ1 ⊕ Γ(S) which
cannot possibly be elliptic (the symbol maps between vector spaces of different dimen-
sion, so can’t be an isomorphism), but there’s an easy fix (including an extra scalar
field f with df = 0) that makes it elliptic.

4.2 Cylinders

On a cylinder Y × R, with translation-invariant metric, the Seiberg–Witten equations
arise as a gradient flow equation. Fix a Spinc -structure t on Y , i.e., a rank 2 hermitian
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vector bundle S→ Y and an oriented isometry ρ : T∗Y → su(S). It extends naturally
to a 4-dimensional Spinc -structure on Y × R.

We consider the space C(Y, t) of pairs (B, ψ) of Clifford connection B in S and
ψ ∈ Γ(S). There is a canonical bijection

C∞(R,C(Y, t))↔ {(A, φ) ∈ C(Y × R, s) : A in temporal gauge},

where temporal gauge means that A has vanishing dt-component. In this temporal
gauge, solutions (A, φ) to the monopole equations are the same thing as solutions to
the equation

d
dt

(B(t), ψ(t)) +∇L(B(t), ψ(t)) = 0

where L is the Chern–Simons–Dirac functional,

L(B(t), ψ(t)) = −1
8

∫
Y

(iFBt + iFBt
0
− η) ∧ (Bt − Bt

0) +
1
2

∫
Y
〈DBψ,ψ〉d volg.

The critical points of this functional—stationary solutions to the 4D monopole equations—
are the 3D monopole equations. (The failure of ellipticity is related to temporal gauge;
stationary solutions could have a constant but non-zero term c dt in the connection B.)

L is invariant under the identity component of the gauge group. For a general gauge
transformation u : Y → U(1), defining a cohomology class [u] = u∗(dt), one has

L(u · (B, ψ))− L(B, ψ) = 2π2
∫

Y
[u] ∧ c1(S) ∈ 2πZ.

4.3 Monopole Floer homology

The gradient flow interpretation of the Seiberg–Witten equations is highly suggestive:

• If X is a compact 4-manifold bounding Y , X̂ its cylindrical completion, and ηX

a closed extension of η to X , one should expect that monopoles on X̂ (satisfying
a ‘finite energy’ condition) will converge, in temporal gauge, to 3-dimensional
η -monopoles on Y .

• One can expect to define an invariant m(X, ηX) ∈ HM(Y, η), where HM(Y, η),
a ‘monopole homology group’, is the the ‘elliptic Morse–Novikov’ (or ‘Floer’)
homology of the functional Lη : B(Y)→ S1 .

The first clause is correct. The second clause is also correct if [η] ∈ H2(Y;R) is
chosen so as to forbid, for Chern–Weil reasons, the existence of reducible monopoles
(B, ψ = 0).

In general, it is too naive because of the complicating effect of reducible monopoles,
which have non-trivial stabilizer U(1) ⊂ GY .
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Roughly, the corrected version—say when [η] = 0—goes as follows.

Let B̃(Y) = C(Y)/GY,y be the quotient of the configuration space C(Y) by the free
action of the based gauge group GY,y = {u ∈ GY : u(y) = 1}. There is a residual
action of U(1) on B̃(Y), and we wish to consider U(1)-equivariant Morse homology
of L on P := B̃.

Inside P, we have the locus Q = Pfix of U(1)-fixed points. We have the homotopy
quotient (or Borel construction)

PU(1) = P×U(1) S∞,

and inside it the subspace

QU(1) = Q×U(1) S∞ ∼= Q× CP∞.

We shall be interested in the long exact sequence for homology of the pair,

· · · → H∗(QU(1))→ H∗(PU(1))→ H∗(QU(1),PU(1))→ . . . .

More accurately, we shall be interested in a long exact sequence

→ HM•(Y)→ ˇHM•(Y)→ ĤM•(Y)→

of Morse–Floer homology groups for the functional L on P, constructed as ‘semi-
infinite’ analogs of the homology groups of QU(1) , PU(1) and (PU(1),QU(1)).

These are the monopole Floer homology groups of Y . They are set up by Kronheimer–
Mrowka in their book using a beautiful and unusual geometric model for U(1)-
equivariant Morse–Floer homology of L.

HM-bar. The least interesting of the groups is HM•(Y), which corresponds to
H∗(QU(1)). It is constructed from solutions to a decoupled version of the monopole
equations,

DBψ = λψ, FB = 0,

whose solutions are flat U(1) connections B and Dirac eigenspinors ψ . This group is
determined entirely by H1(Y;Z) with the triple cup-product form Λ3H1(Y;Z)→ Z.

4.4 The TQFT

There is a cobordism category COBconn
3+1 whose objects are closed, oriented, connected

3-manifolds. A morphism Y1 → Y2 is a diffeomorphism-class of compact, oriented
cobordisms from Y1 to Y2 . Seiberg–Witten theory extends to a functor defined on
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COBconn
3+1 . It assigns to each object Y an exact triangle of abelian groups (actually,

topological Z[[U]]-modules)
Ȟ• → H• → Ĥ•,

each graded by the set Spinc(Y).

A cobordism X from Y1 to Y2 induces homomorphisms HM(X) : HM•(Y1)→ HM•(Y2)
on each version of monopole Floer theory, respecting the exact triangles. Composition
of cobordisms corresponds to composition of homomorphisms.

Each Spinc -structure on X gives rise to a map HM(X, s) between appropriate sum-
mands of the HM -groups, and HM(X) is the sum of all of these.

If one wants to incorporate disconnected Y into the theory, a more elaborate algebraic
construction will be needed, reflecting the structure of the cohomology of the ambient
configuration space. I don’t know how to do this.

One might expect that the SW invariant of a closed Spinc 4-manifold X would be
obtained by applying one of these homomorphisms HM(X0, s) to the cobordism X0

from S3 to S3 obtained by puncturing X twice. Note, however, that the maps in the
monopole Floer theory exist regardless of b+(X). And in fact the map HM(X0, s) is
zero in all three theories.

The SW invariant of X is extracted from the Floer theory by a ‘secondary cohomology
operation’, secondary in the sense that it is only well-defined when b+(X) > 0 (and
is multi-valued if b+(X) = 1). When b+(X) > 0, there are no reducible solutions to
the monopole equations. The map HM(X, s), which counts only reducible solutions,
is zero because its defining moduli spaces are empty. This emptiness facilitates the
construction of a diagonal map

ˇHM(X, s)→ ĤM(X, s)

factoring ĤM(X, s). It is this diagonal map from which the Seiberg–Witten invariant
can be extracted.
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