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5 Monopoles and Lagrangian submanifolds

5.1 Monopoles on 3-manifolds with boundary

Suppose Y is an oriented, Riemannian 3-manifold with boundary 0Y =: . Let t be a
Spin®-structure and 7 a closed 2-form on Y. We have the configuration space C(Y,t),
and the monopole moduli space £ = L(g, n) inside it.

Question: What sort of structure does £ have?

Answer: there’s arestrictionmap r: L — V := C(Y|y, t|n), intertwining the actions of
the gauge groups Gy and Gy . The (affine) vector space V has a canonical symplectic
structure. If 7 is chosen to that 27ci(S) — [n] # 0 € H*(Y; R)—so that there are no
reducible monopoles—then r is a Lagrangian embedding.

(Of course, V is infinite-dimensional. This is still true after passing to Gy-orbits—
equivalently, passing to U(1)-orbits on the Coulomb gauge slice.)

Now let ¥ = Y Us, (X x R, ) be the cylindrical completion of Y. Here we assume
that the metric g is a product in a collar neighbourhood of ¥ C Y, and we extend this
product form over the cylindrical end. Extend 7 to /) on ¥ in the obvious way, and
consider the moduli space L of finite-energy fj-monopoles on Y.

Variant question: What structure does £ have?

Answer : Suppose that S|y, = L@ (K~'L), and say n|s, = 7vol where 7 > 27 area(X).
The vortex moduli space Vor(L, ) is the symplectic reduction of C(Y|yx,t) by the
Hamiltonian action of Gy, at the moment-map value 7vol. There is a natural map

ay: 2)/91/ — Vor(L, 7)

taking a monopole to its asymptotic limit on the cylindrical end, and this is a Lagrangian
immersion.

Note that the vortex moduli space is finite-dimensional (it is Sym%el ¥0).

These answers are well in line with general elliptic theory, but the proofs are substantial.
They are due to T. Nguyen (PhD thesis, MIT, 2011).

I claim that, in extensions of monopole Floer theory which encompass 3-manifolds with
boundary, the Lagrangian immersions ay should be considered as the basic objects.
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5.2 Elliptic theory and Lagrangian subspaces

Consider a compact, oriented Riemannian manifold Z with boundary, and a first-order
elliptic operator D acting in sections of a vector bundle £ — Y. We assume that D is
formally self-adjoint, i.e.,

/Z (u, Dv)d vol = / (Du, v)d vol

z

for all u,v € I'(E) such that u is supported compactly in int(Z).

When u does not vanish at the boundary, one has ‘Green’s formula’

/((u,Dv) — (Du,v))dvol = i/ (o(o)r(u), r(v))dvol,
z oz

wherer r denotes restriction to 0Z, o is the outward unit conormal, and o the symbol
of D. Let

o g) = i /8 (o g)dvol. f.5 € TV]op)

Then w is a symplectic pairing, and evidently (ker D)|z is an isotropic subspace.

A much harder fact is that (ker D)| is actually a Lagrangian subspace [?]. The point
is that an isotropic complement can be constructed, roughly speaking, by doubling Z
to a closed manifold DZ = Z U (—Z), doubling D to a self-adjoint elliptic operator D
over X, and considering the image over 9dZ of ker(D|,Z)).)

Example 5.1 Consider the Hodge operator d + d* on 2. Its kernel—the harmonic
forms—define a Lagrangian subspace of 23, @ 23,.

Example 5.2 On acompact 3-manifold Y, the flat connections in a line bundle L — Y
restrict to a Lagrangian subspace of the flat connections in L|gy. Here the symplectic
structure is (a,b) — [, a Ab.

The linearized 3-dimensional monopole equations fall into this framework, and this
explains why monopoles restrict to give a Lagrangian submanifold of the configuration
space of the boundary.

Note that £ embeds into C(0Y) by a unique continuation principle for solutions to the
Dirac equation Dg1) = 0.

The statement about immersions into vortex space requires additional analysis.
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5.3 Monopole Floer homology versus Heegaard Floer homology

Monopole Floer homology is isomorphic to Heegaard Floer homology, as has been
proved by Kutluhan—Lee—Taubes. Part of the statement is that

HM.(Y) 2 HFT(Y),

and I shall concentrate on this aspect. However, most elements of the proof I shall
describe are imaginary: they have not been carried out.

We consider a Morse function f on the closed 3-manifold Y, self-indexing with one
minimum x_ and one maximum x .

Step 1: puncturing Y. Let Y°° =Y \ {x_,x;}. We can choose a metric g on Y°°
which is cylindrical near the punctures, and (cf. Calabi’s work) such that f is harmonic:
d*df = 0. Thus n := *df is a closed 2-form. We consider Spin®-structures on Y°°
whose spinor bundle S restricts to the linking 2-spheres of the punctures as 1 @ K Sjl .
All finite-energy 77-monopoles on Y°° asymptote (up to gauge) to the canonical vortex
in Vor(L,7) = {pt.}. Using these monopoles, and their 4-dimensional analogues on
Y°° x R, one should be able to form a version of Floer homology

HM.(Y°, 7).
The coefficients are taken to be in the ring R = Z[[U]].

After choosing a path in Y from x_ to x; (e.g. a gradient flowline), one can identify
Spin®-structures on Y°° which are canonical on the ends with Spin®-structures on Y.
Using this identification, one should have HM.(Y°°, i) = HM.(Y).

This seems well within the range of current methods, and I will not comment further
except to point out that HM.(Y°°, Tn) involves only irreducible monopoles.

Step 2: the Atiyah—Floer isomorphism. f divides Y°° into two punctured handle-
bodies, U, and Ug,, meeting along a surface . Their cylindrical completions give
rise to immersed Lagrangian submanifolds

Lo, Lg C Vor(E, 1),

where £ — X is a line bundle of degree g, the genus of 3. I claim that these
Lagrangians are actually embedded. (At the level of reducible monopoles, this amounts
to the fact that H 1(U;) — HY(Y) is injective, ditto for Ug.) Moreover, they are tori
(one way to approach proving this is to look at how they degenerate as T decreases to
the parameter at which all the vortices and monopoles are reducible).
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The goal of this step is to prove a version of the Atiyah—Floer conjecture,
HF(L,,Lg) = HM.(Y®°, 7).

There is indeed a bijection between the generators for the respective complexes, arising
from the gluing theory of monopoles. Relating the differentials is very considerably
more challenging. Proving such a statement will be key in extending monopole Floer
homology to 2 dimensions.

Step 3: the Taubes limit. Now we take the limit 7 — oco. Note that Vor(E, 7) =
Symé#(32) canonically. This isomorphism induces Kihler forms w;, in varying coho-
mology classes. There are two things to prove. One is that the modules HF (L -, L ;)
are independent of 7. If all these groups are set up to have identical formal properties,
this appears to be a reasonable (though not at all trivial) instance of the continuity of
Floer homology. Second, one should prove that in the limit 7 — 0o, LL » is smoothly
isotoped to the Heegaard torus Ty (similarly for 3). Indeed, in this limit, monopoles
on the cylindical completion of Uy, localize along gradient flowlines for f, with these
flowlines appearing as the (limiting) zero-sets of a-spinors.

Note that in this approach, the different versions of the homology theories (HF* and
HF®° on the Heegaard side) should arise in a fairly simple way by taking the coefficient
rings to be different versions of the Novikov ring.
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