Lectures on gauge theory and symplectic geometry

TIM PERUTZ

5 Monopoles and Lagrangian submanifolds

5.1 Monopoles on 3-manifolds with boundary

Suppose Y is an oriented, Riemannian 3-manifold with boundary $\partial Y =: \Sigma$. Let $\mathfrak t$ be a Spin^c-structure and η a closed 2-form on Y. We have the configuration space $\mathcal C(Y,\mathfrak t)$, and the monopole moduli space $\mathcal L = \mathcal L(g,\eta)$ inside it.

Question: What sort of structure does \mathcal{L} have?

Answer: there's a restriction map $r \colon \mathcal{L} \to V := \mathcal{C}(Y|_{\Sigma}, \mathfrak{t}|_{\Sigma})$, intertwining the actions of the gauge groups \mathcal{G}_Y and \mathcal{G}_{Σ} . The (affine) vector space V has a canonical symplectic structure. If η is chosen to that $2\pi c_1(\mathbb{S}) - [\eta] \neq 0 \in H^2(Y; \mathbb{R})$ —so that there are no reducible monopoles—then r is a Lagrangian embedding.

(Of course, V is infinite-dimensional. This is still true after passing to \mathcal{G}_Y -orbits—equivalently, passing to U(1)-orbits on the Coulomb gauge slice.)

Now let $\hat{Y} = Y \cup_{\Sigma} (\Sigma \times \mathbb{R}_+)$ be the cylindrical completion of Y. Here we assume that the metric g is a product in a collar neighbourhood of $\Sigma \subset Y$, and we extend this product form over the cylindrical end. Extend η to $\hat{\eta}$ on \hat{Y} in the obvious way, and consider the moduli space $\hat{\mathcal{L}}$ of *finite-energy* $\hat{\eta}$ -monopoles on \hat{Y} .

Variant question: What structure does $\hat{\mathcal{L}}$ have?

Answer: Suppose that $\mathbb{S}|_{\Sigma} = L \oplus (K^{-1}L)$, and say $\eta|_{\Sigma} = \tau vol$ where $\tau > 2\pi \operatorname{area}(\Sigma)$. The vortex moduli space $\operatorname{Vor}(L,\tau)$ is the symplectic reduction of $\mathfrak{C}(Y|_{\Sigma},\mathfrak{t})$ by the Hamiltonian action of \mathfrak{G}_{Σ} at the moment-map value τvol . There is a natural map

$$a_Y : \hat{\mathcal{L}}/\mathfrak{G}_Y \to \text{Vor}(L, \tau)$$

taking a monopole to its asymptotic limit on the cylindrical end, and this is a Lagrangian immersion.

Note that the vortex moduli space is finite-dimensional (it is $\operatorname{Sym}^{\deg L} \Sigma$).

These answers are well in line with general elliptic theory, but the proofs are substantial. They are due to T. Nguyen (PhD thesis, MIT, 2011).

I claim that, in extensions of monopole Floer theory which encompass 3-manifolds with boundary, the Lagrangian immersions a_Y should be considered as the basic objects.

2 Tim Perutz

5.2 Elliptic theory and Lagrangian subspaces

Consider a compact, oriented Riemannian manifold Z with boundary, and a first-order elliptic operator D acting in sections of a vector bundle $E \to Y$. We assume that D is formally self-adjoint, i.e.,

$$\int_{Z} \langle u, Dv \rangle d \, vol = \int_{Z} \langle Du, v \rangle d \, vol$$

for all $u, v \in \Gamma(E)$ such that u is supported compactly in int(Z).

When u does not vanish at the boundary, one has 'Green's formula'

$$\int_{Z} (\langle u, Dv \rangle - \langle Du, v \rangle) dvol = i \int_{\partial Z} \langle \sigma(o) r(u), r(v) \rangle dvol,$$

wherer r denotes restriction to ∂Z , o is the outward unit conormal, and σ the symbol of D. Let

$$\omega(f,g) = i \int_{\partial Z} \langle \sigma(o)f, g \rangle d \, vol, \quad f, g \in \Gamma(V|_{\partial Z}).$$

Then ω is a symplectic pairing, and evidently $(\ker D)|_Z$ is an isotropic subspace.

A much harder fact is that $(\ker D)|_Z$ is actually a *Lagrangian* subspace [?]. The point is that an isotropic complement can be constructed, roughly speaking, by doubling Z to a closed manifold $DZ = Z \cup (-Z)$, doubling D to a self-adjoint elliptic operator \tilde{D} over X, and considering the image over ∂Z of $\ker(\tilde{D}|_{-Z})$.)

Example 5.1 Consider the Hodge operator $d + d^*$ on Ω_Z^* . Its kernel—the harmonic forms—define a Lagrangian subspace of $\Omega_{\partial Z}^* \oplus \Omega_{\partial Z}^*$.

Example 5.2 On a compact 3-manifold Y, the flat connections in a line bundle $L \to Y$ restrict to a Lagrangian subspace of the flat connections in $L|_{\partial Y}$. Here the symplectic structure is $(a,b) \mapsto \int_{\partial Y} a \wedge b$.

The linearized 3-dimensional monopole equations fall into this framework, and this explains why monopoles restrict to give a Lagrangian submanifold of the configuration space of the boundary.

Note that \mathcal{L} embeds into $\mathcal{C}(\partial Y)$ by a unique continuation principle for solutions to the Dirac equation $D_B\psi=0$.

The statement about immersions into vortex space requires additional analysis.

5.3 Monopole Floer homology versus Heegaard Floer homology

Monopole Floer homology is isomorphic to Heegaard Floer homology, as has been proved by Kutluhan-Lee-Taubes. Part of the statement is that

$$\check{HM}_{\bullet}(Y) \cong HF^{+}(Y),$$

and I shall concentrate on this aspect. However, most elements of the proof I shall describe are imaginary: they have not been carried out.

We consider a Morse function f on the closed 3-manifold Y, self-indexing with one minimum x_{-} and one maximum x_{+} .

Step 1: puncturing Y. Let $Y^{\circ\circ} = Y \setminus \{x_-, x_+\}$. We can choose a metric g on $Y^{\circ\circ}$ which is cylindrical near the punctures, and (cf. Calabi's work) such that f is harmonic: $d^*df = 0$. Thus $\eta := \star df$ is a closed 2-form. We consider Spin^c-structures on $Y^{\circ\circ}$ whose spinor bundle $\mathbb S$ restricts to the linking 2-spheres of the punctures as $\mathbf 1 \oplus K_{S^2}^{-1}$. All finite-energy $\tau\eta$ -monopoles on $Y^{\circ\circ}$ asymptote (up to gauge) to the canonical vortex in $Vor(L,\tau) = \{pt.\}$. Using these monopoles, and their 4-dimensional analogues on $Y^{\circ\circ} \times \mathbb R$, one should be able to form a version of Floer homology

$$HM_{\bullet}(Y^{\circ}, \tau \eta).$$

The coefficients are taken to be in the ring $R = \mathbb{Z}[[U]]$.

After choosing a path in Y from x_- to x_+ (e.g. a gradient flowline), one can identify $Spin^c$ -structures on $Y^{\circ\circ}$ which are canonical on the ends with $Spin^c$ -structures on Y. Using this identification, one should have $HM_{\bullet}(Y^{\circ\circ}, \tau\eta) \cong H\check{M}_{\bullet}(Y)$.

This seems well within the range of current methods, and I will not comment further except to point out that $HM_{\bullet}(Y^{\circ\circ}, \tau\eta)$ involves only *irreducible* monopoles.

Step 2: the Atiyah–Floer isomorphism. f divides $Y^{\circ\circ}$ into two punctured handle-bodies, U_{α}° and U_{β}° , meeting along a surface Σ . Their cylindrical completions give rise to immersed Lagrangian submanifolds

$$\mathbb{L}_{\alpha}, \mathbb{L}_{\beta} \subset \text{Vor}(E, \tau),$$

where $E \to \Sigma$ is a line bundle of degree g, the genus of Σ . I claim that these Lagrangians are actually embedded. (At the level of reducible monopoles, this amounts to the fact that $H^1(U_\alpha^\circ) \to H^1(\Sigma)$ is injective, ditto for U_β° .) Moreover, they are tori (one way to approach proving this is to look at how they degenerate as τ decreases to the parameter at which all the vortices and monopoles are reducible).

4 Tim Perutz

The goal of this step is to prove a version of the Atiyah–Floer conjecture,

$$HF(\mathbb{L}_{\alpha}, \mathbb{L}_{\beta}) \cong HM_{\bullet}(Y^{\circ \circ}, \tau \eta).$$

There is indeed a bijection between the generators for the respective complexes, arising from the gluing theory of monopoles. Relating the differentials is very considerably more challenging. Proving such a statement will be key in extending monopole Floer homology to 2 dimensions.

Step 3: the Taubes limit. Now we take the limit $\tau \to \infty$. Note that $Vor(E,\tau) \cong \operatorname{Sym}^g(\Sigma)$ canonically. This isomorphism induces Kähler forms ω_{τ} in varying cohomology classes. There are two things to prove. One is that the modules $HF(\mathbb{L}_{\alpha,\tau},\mathbb{L}_{\beta,\tau})$ are independent of τ . If all these groups are set up to have identical formal properties, this appears to be a reasonable (though not at all trivial) instance of the continuity of Floer homology. Second, one should prove that in the limit $\tau \to \infty$, $\mathbb{L}_{\alpha,\tau}$ is smoothly isotoped to the Heegaard torus \mathbb{T}_{β} (similarly for β). Indeed, in this limit, monopoles on the cylindical completion of U_{α}° localize along gradient flowlines for f, with these flowlines appearing as the (limiting) zero-sets of α -spinors.

Note that in this approach, the different versions of the homology theories (HF^{\pm} and HF^{∞} on the Heegaard side) should arise in a fairly simple way by taking the coefficient rings to be different versions of the Novikov ring.