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5 Monopoles and Lagrangian submanifolds

5.1 Monopoles on 3-manifolds with boundary

Suppose Y is an oriented, Riemannian 3-manifold with boundary ∂Y =: Σ. Let t be a
Spinc -structure and η a closed 2-form on Y . We have the configuration space C(Y, t),
and the monopole moduli space L = L(g, η) inside it.

Question: What sort of structure does L have?

Answer: there’s a restriction map r : L→ V := C(Y|Σ, t|Σ), intertwining the actions of
the gauge groups GY and GΣ . The (affine) vector space V has a canonical symplectic
structure. If η is chosen to that 2πc1(S) − [η] 6= 0 ∈ H2(Y;R)—so that there are no
reducible monopoles—then r is a Lagrangian embedding.

(Of course, V is infinite-dimensional. This is still true after passing to GY -orbits—
equivalently, passing to U(1)-orbits on the Coulomb gauge slice.)

Now let Ŷ = Y ∪Σ (Σ × R+) be the cylindrical completion of Y . Here we assume
that the metric g is a product in a collar neighbourhood of Σ ⊂ Y , and we extend this
product form over the cylindrical end. Extend η to η̂ on Ŷ in the obvious way, and
consider the moduli space L̂ of finite-energy η̂ -monopoles on Ŷ .

Variant question: What structure does L̂ have?

Answer : Suppose that S|Σ = L⊕ (K−1L), and say η|Σ = τvol where τ > 2π area(Σ).
The vortex moduli space Vor(L, τ ) is the symplectic reduction of C(Y|Σ, t) by the
Hamiltonian action of GΣ at the moment-map value τ vol. There is a natural map

aY : L̂/GY → Vor(L, τ )

taking a monopole to its asymptotic limit on the cylindrical end, and this is a Lagrangian
immersion.

Note that the vortex moduli space is finite-dimensional (it is Symdeg L Σ).

These answers are well in line with general elliptic theory, but the proofs are substantial.
They are due to T. Nguyen (PhD thesis, MIT, 2011).

I claim that, in extensions of monopole Floer theory which encompass 3-manifolds with
boundary, the Lagrangian immersions aY should be considered as the basic objects.
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5.2 Elliptic theory and Lagrangian subspaces

Consider a compact, oriented Riemannian manifold Z with boundary, and a first-order
elliptic operator D acting in sections of a vector bundle E → Y . We assume that D is
formally self-adjoint, i.e., ∫

Z
〈u,Dv〉d vol =

∫
Z
〈Du, v〉d vol

for all u, v ∈ Γ(E) such that u is supported compactly in int(Z).

When u does not vanish at the boundary, one has ‘Green’s formula’∫
Z

(〈u,Dv〉 − 〈Du, v〉)d vol = i
∫
∂Z
〈σ(o)r(u), r(v)〉d vol,

wherer r denotes restriction to ∂Z , o is the outward unit conormal, and σ the symbol
of D. Let

ω(f , g) = i
∫
∂Z
〈σ(o)f , g〉d vol, f , g ∈ Γ(V|∂Z).

Then ω is a symplectic pairing, and evidently (ker D)|Z is an isotropic subspace.

A much harder fact is that (ker D)|Z is actually a Lagrangian subspace [?]. The point
is that an isotropic complement can be constructed, roughly speaking, by doubling Z
to a closed manifold DZ = Z ∪ (−Z), doubling D to a self-adjoint elliptic operator D̃
over X , and considering the image over ∂Z of ker(D̃|−Z)).)

Example 5.1 Consider the Hodge operator d + d∗ on Ω∗Z . Its kernel—the harmonic
forms—define a Lagrangian subspace of Ω∗∂Z ⊕ Ω∗∂Z .

Example 5.2 On a compact 3-manifold Y , the flat connections in a line bundle L→ Y
restrict to a Lagrangian subspace of the flat connections in L|∂Y . Here the symplectic
structure is (a, b) 7→

∫
∂Y a ∧ b.

The linearized 3-dimensional monopole equations fall into this framework, and this
explains why monopoles restrict to give a Lagrangian submanifold of the configuration
space of the boundary.

Note that L embeds into C(∂Y) by a unique continuation principle for solutions to the
Dirac equation DBψ = 0.

The statement about immersions into vortex space requires additional analysis.
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5.3 Monopole Floer homology versus Heegaard Floer homology

Monopole Floer homology is isomorphic to Heegaard Floer homology, as has been
proved by Kutluhan–Lee–Taubes. Part of the statement is that

ˇHM•(Y) ∼= HF+(Y),

and I shall concentrate on this aspect. However, most elements of the proof I shall
describe are imaginary: they have not been carried out.

We consider a Morse function f on the closed 3-manifold Y , self-indexing with one
minimum x− and one maximum x+ .

Step 1: puncturing Y . Let Y◦◦ = Y \ {x−, x+}. We can choose a metric g on Y◦◦

which is cylindrical near the punctures, and (cf. Calabi’s work) such that f is harmonic:
d∗df = 0. Thus η := ?df is a closed 2-form. We consider Spinc -structures on Y◦◦

whose spinor bundle S restricts to the linking 2-spheres of the punctures as 1⊕ K−1
S2 .

All finite-energy τη -monopoles on Y◦◦ asymptote (up to gauge) to the canonical vortex
in Vor(L, τ ) = {pt.}. Using these monopoles, and their 4-dimensional analogues on
Y◦◦ × R, one should be able to form a version of Floer homology

HM•(Y◦, τη).

The coefficients are taken to be in the ring R = Z[[U]].

After choosing a path in Y from x− to x+ (e.g. a gradient flowline), one can identify
Spinc -structures on Y◦◦ which are canonical on the ends with Spinc -structures on Y .
Using this identification, one should have HM•(Y◦◦, τη) ∼= ˇHM•(Y).

This seems well within the range of current methods, and I will not comment further
except to point out that HM•(Y◦◦, τη) involves only irreducible monopoles.

Step 2: the Atiyah–Floer isomorphism. f divides Y◦◦ into two punctured handle-
bodies, U◦α and U◦β , meeting along a surface Σ. Their cylindrical completions give
rise to immersed Lagrangian submanifolds

Lα,Lβ ⊂ Vor(E, τ ),

where E → Σ is a line bundle of degree g, the genus of Σ. I claim that these
Lagrangians are actually embedded. (At the level of reducible monopoles, this amounts
to the fact that H1(U◦α) → H1(Σ) is injective, ditto for U◦β .) Moreover, they are tori
(one way to approach proving this is to look at how they degenerate as τ decreases to
the parameter at which all the vortices and monopoles are reducible).
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The goal of this step is to prove a version of the Atiyah–Floer conjecture,

HF(Lα,Lβ) ∼= HM•(Y◦◦, τη).

There is indeed a bijection between the generators for the respective complexes, arising
from the gluing theory of monopoles. Relating the differentials is very considerably
more challenging. Proving such a statement will be key in extending monopole Floer
homology to 2 dimensions.

Step 3: the Taubes limit. Now we take the limit τ → ∞. Note that Vor(E, τ ) ∼=
Symg(Σ) canonically. This isomorphism induces Kähler forms ωτ in varying coho-
mology classes. There are two things to prove. One is that the modules HF(Lα,τ ,Lβ,τ )
are independent of τ . If all these groups are set up to have identical formal properties,
this appears to be a reasonable (though not at all trivial) instance of the continuity of
Floer homology. Second, one should prove that in the limit τ →∞, Lα,τ is smoothly
isotoped to the Heegaard torus Tβ (similarly for β ). Indeed, in this limit, monopoles
on the cylindical completion of U◦α localize along gradient flowlines for f , with these
flowlines appearing as the (limiting) zero-sets of α-spinors.

Note that in this approach, the different versions of the homology theories (HF± and
HF∞ on the Heegaard side) should arise in a fairly simple way by taking the coefficient
rings to be different versions of the Novikov ring.
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